Spaces:
Runtime error
Runtime error
Update app.py
#1
by
VladimirVorobev
- opened
app.py
CHANGED
@@ -7,7 +7,17 @@ tokenizer = AutoTokenizer.from_pretrained('humarin/chatgpt_paraphraser_on_T5_ba
|
|
7 |
model = AutoModelForSeq2SeqLM.from_pretrained('humarin/chatgpt_paraphraser_on_T5_base', cache_dir='./Models')
|
8 |
# torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
|
9 |
|
10 |
-
def paraphrase(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
input_ids = tokenizer(
|
12 |
f'paraphrase: {text}',
|
13 |
return_tensors="pt", padding="longest",
|
@@ -16,20 +26,42 @@ def paraphrase(model, text, max_length=128, num_return_sequences=5, num_beams=25
|
|
16 |
).input_ids
|
17 |
|
18 |
outputs = model.generate(
|
19 |
-
input_ids, temperature=temperature, repetition_penalty=
|
20 |
-
num_return_sequences=num_return_sequences, no_repeat_ngram_size=
|
|
|
|
|
21 |
)
|
22 |
|
23 |
res = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
24 |
|
25 |
return res
|
26 |
|
27 |
-
def fn(
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
demo = gr.Interface(
|
31 |
fn=fn,
|
32 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
outputs=['text'],
|
34 |
)
|
35 |
|
|
|
7 |
model = AutoModelForSeq2SeqLM.from_pretrained('humarin/chatgpt_paraphraser_on_T5_base', cache_dir='./Models')
|
8 |
# torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
|
9 |
|
10 |
+
def paraphrase(
|
11 |
+
text,
|
12 |
+
num_beams=5,
|
13 |
+
num_beam_groups=5,
|
14 |
+
num_return_sequences=5,
|
15 |
+
repetition_penalty=10.0,
|
16 |
+
diversity_penalty=3.0,
|
17 |
+
no_repeat_ngram_size=2,
|
18 |
+
temperature=0.7,
|
19 |
+
max_length=128
|
20 |
+
):
|
21 |
input_ids = tokenizer(
|
22 |
f'paraphrase: {text}',
|
23 |
return_tensors="pt", padding="longest",
|
|
|
26 |
).input_ids
|
27 |
|
28 |
outputs = model.generate(
|
29 |
+
input_ids, temperature=temperature, repetition_penalty=repetition_penalty,
|
30 |
+
num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size,
|
31 |
+
num_beams=num_beams, num_beam_groups=num_beam_groups,
|
32 |
+
max_length=max_length, diversity_penalty=diversity_penalty
|
33 |
)
|
34 |
|
35 |
res = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
36 |
|
37 |
return res
|
38 |
|
39 |
+
def fn(
|
40 |
+
text,
|
41 |
+
num_beams=5,
|
42 |
+
num_beam_groups=5,
|
43 |
+
num_return_sequences=5,
|
44 |
+
repetition_penalty=10.0,
|
45 |
+
diversity_penalty=3.0,
|
46 |
+
no_repeat_ngram_size=2,
|
47 |
+
temperature=0.7,
|
48 |
+
max_length=128
|
49 |
+
):
|
50 |
+
return '\n'.join(paraphrase(text, num_beams, num_beam_groups, num_return_sequences, repetition_penalty, diversity_penalty, no_repeat_ngram_size, temperature, max_length))
|
51 |
|
52 |
demo = gr.Interface(
|
53 |
fn=fn,
|
54 |
+
inputs=[
|
55 |
+
gr.Textbox(lines=3, placeholder='Enter Text To Paraphrase'),
|
56 |
+
gr.Slider(minimum=1, maximum=25, step=1, value=5),
|
57 |
+
gr.Slider(minimum=1, maximum=25, step=1, value=5),
|
58 |
+
gr.Slider(minimum=1, maximum=20, step=1, value=5),
|
59 |
+
gr.Slider(minimum=0.6, maximum=20.1, step=0.5, value=10.1),
|
60 |
+
gr.Slider(minimum=0.6, maximum=20.1, step=0.5, value=3.1),
|
61 |
+
gr.Slider(minimum=1, maximum=10, step=1, value=2),
|
62 |
+
gr.Slider(minimum=0.0, maximum=1000, step=0.1, value=0.7),
|
63 |
+
gr.Slider(minimum=32, maximum=512, step=1, value=128),
|
64 |
+
],
|
65 |
outputs=['text'],
|
66 |
)
|
67 |
|