File size: 11,677 Bytes
5d92a23 1a21d80 5d92a23 0d89801 5d92a23 0d89801 9ed6403 a715048 7231bf4 a715048 6d9ca04 d718ec3 0d89801 7756cc0 0d89801 5d92a23 1dcf1d9 f0e8d1f f37c54f 63c0f18 7756cc0 1a21d80 6d9ca04 a715048 f56aaf9 a715048 f56aaf9 a715048 f56aaf9 a715048 44b4b3d 6d9ca04 0d89801 5d92a23 1dcf1d9 5d92a23 1dcf1d9 11414b7 5d92a23 d2b30ac 5d92a23 1a21d80 5d92a23 d718ec3 a4143d8 2008ad3 66437b5 5d92a23 0d89801 1a21d80 0d89801 d718ec3 0d89801 5d92a23 0d89801 d718ec3 7a8b6d6 d718ec3 0d89801 1a21d80 0d89801 5d92a23 0d89801 1a21d80 a4143d8 0d89801 a715048 2008ad3 a715048 7a8b6d6 a715048 5d92a23 a715048 7a8b6d6 a715048 6d9ca04 a715048 7231bf4 0d89801 3e075bb d718ec3 66437b5 2008ad3 66437b5 8ca9ae0 2008ad3 8ca9ae0 6d9ca04 2008ad3 66437b5 2008ad3 66437b5 6d9ca04 2008ad3 66437b5 2008ad3 66437b5 8ca9ae0 5d92a23 2008ad3 9ed6403 66437b5 5d92a23 11414b7 5d92a23 1dcf1d9 5d92a23 a4143d8 5d92a23 1dcf1d9 5d92a23 1dcf1d9 5d92a23 1dcf1d9 5d92a23 6d9ca04 5d92a23 0d89801 7231bf4 5d92a23 1a21d80 0d89801 d718ec3 a4143d8 2008ad3 66437b5 5d92a23 0d89801 5d92a23 0d89801 7ba0702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
from typing import Tuple
import requests
import random
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image
from diffusers import FluxInpaintPipeline
from huggingface_hub import login
import os
import time
from gradio_imageslider import ImageSlider
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
import requests
from io import BytesIO
import PIL.Image
import requests
MARKDOWN = """
# FLUX.1 Inpainting with lora
"""
MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
HF_TOKEN = HF
login(token=HF_TOKEN)
bfl_repo="black-forest-labs/FLUX.1-dev"
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
print(f"Activity: {self.activity_name}, End time: {self.start_time_formatted}")
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
image = image.convert("RGBA")
data = image.getdata()
new_data = []
for item in data:
avg = sum(item[:3]) / 3
if avg < threshold:
new_data.append((0, 0, 0, 0))
else:
new_data.append(item)
image.putdata(new_data)
return image
# text_encoder = CLIPTextModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/clip_l.safetensors"), torch_dtype=dtype)
# tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
# text_encoder_2 = T5EncoderModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/t5xxl_fp8_e4m3fn.safetensors"), torch_dtype=dtype)
# tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
# vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype)
# transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype)
pipe = FluxInpaintPipeline.from_pretrained(bfl_repo, torch_dtype=torch.bfloat16).to(DEVICE)
def resize_image_dimensions(
original_resolution_wh: Tuple[int, int],
maximum_dimension: int = IMAGE_SIZE
) -> Tuple[int, int]:
width, height = original_resolution_wh
# if width <= maximum_dimension and height <= maximum_dimension:
# width = width - (width % 32)
# height = height - (height % 32)
# return width, height
if width > height:
scaling_factor = maximum_dimension / width
else:
scaling_factor = maximum_dimension / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
new_width = new_width - (new_width % 32)
new_height = new_height - (new_height % 32)
return new_width, new_height
@spaces.GPU(duration=100)
def process(
input_image_editor: dict,
image_url: str,
mask_url: str,
blur_mask: bool,
blur_factor: int,
lora_path: str,
lora_weights: str,
lora_scale: float,
trigger_word: str,
input_text: str,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
num_inference_steps_slider: int,
progress=gr.Progress(track_tqdm=True)
):
if not input_text:
gr.Info("Please enter a text prompt.")
return None, None
# default image edtiro
image = input_image_editor['background']
mask = input_image_editor['layers'][0]
if image_url:
print("start to fetch image from url", image_url)
response = requests.get(image_url)
response.raise_for_status()
image = PIL.Image.open(BytesIO(response.content))
print("fetch image success")
if mask_url:
print("start to fetch mask from url", mask_url)
response = requests.get(mask_url)
response.raise_for_status()
mask = PIL.Image.open(BytesIO(response.content))
print("fetch mask success")
if not image:
gr.Info("Please upload an image.")
return None, None
if not mask:
gr.Info("Please draw a mask on the image.")
return None, None
if blur_mask:
mask = pipe.mask_processor.blur(mask, blur_factor=blur_factor)
with calculateDuration("resize image"):
width, height = resize_image_dimensions(original_resolution_wh=image.size)
resized_image = image.resize((width, height), Image.LANCZOS)
resized_mask = mask.resize((width, height), Image.LANCZOS)
with calculateDuration("load lora"):
print(lora_path, lora_weights)
pipe.load_lora_weights(lora_path, weight_name=lora_weights)
if randomize_seed_checkbox:
seed_slicer = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed_slicer)
with calculateDuration("run pipe"):
print(input_text, width, height, strength_slider, num_inference_steps_slider, lora_scale)
result = pipe(
prompt=f"{input_text} {trigger_word}",
image=resized_image,
mask_image=resized_mask,
width=width,
height=height,
strength=strength_slider,
generator=generator,
num_inference_steps=num_inference_steps_slider,
max_sequence_length=256,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return [resized_image, result], resized_mask
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image_editor_component = gr.ImageEditor(
label='Image',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
image_url = gr.Textbox(
label="image url",
show_label=True,
max_lines=1,
placeholder="Enter your image url (Optional)",
)
mask_url = gr.Textbox(
label="Mask image url",
show_label=True,
max_lines=1,
placeholder="Enter your mask image url (Optional)",
)
with gr.Accordion("Prompt Settings", open=True):
input_text_component = gr.Textbox(
label="Inpaint prompt",
show_label=True,
max_lines=1,
placeholder="Enter your prompt",
)
trigger_word = gr.Textbox(
label="Lora trigger word",
show_label=True,
max_lines=1,
placeholder="Enter your lora trigger word here",
value="a photo of TOK"
)
submit_button_component = gr.Button(
value='Submit', variant='primary', scale=0)
with gr.Accordion("Lora Settings", open=True):
lora_path = gr.Textbox(
label="Lora model path",
show_label=True,
max_lines=1,
placeholder="Enter your model path",
info="Currently, only LoRA hosted on Hugging Face'model can be loaded properly.",
value="XLabs-AI/flux-RealismLora"
)
lora_weights = gr.Textbox(
label="Lora weights",
show_label=True,
max_lines=1,
placeholder="Enter your lora weights name",
value="lora.safetensors"
)
lora_scale = gr.Slider(
label="Lora scale",
show_label=True,
minimum=0,
maximum=1,
step=0.1,
value=0.9,
)
with gr.Accordion("Advanced Settings", open=True):
seed_slicer_component = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed_checkbox_component = gr.Checkbox(
label="Randomize seed", value=True)
blur_mask = gr.Checkbox(
label="if blur mask", value=False)
blur_factor = gr.Slider(
label="blur factor",
minimum=0,
maximum=50,
step=1,
value=33,
)
with gr.Row():
strength_slider_component = gr.Slider(
label="Strength",
info="Indicates extent to transform the reference `image`. "
"Must be between 0 and 1. `image` is used as a starting "
"point and more noise is added the higher the `strength`.",
minimum=0,
maximum=1,
step=0.01,
value=0.85,
)
num_inference_steps_slider_component = gr.Slider(
label="Number of inference steps",
info="The number of denoising steps. More denoising steps "
"usually lead to a higher quality image at the",
minimum=1,
maximum=50,
step=1,
value=28,
)
with gr.Column():
output_image_component = ImageSlider(label="Generate image", type="pil", slider_color="pink")
with gr.Accordion("Debug", open=False):
output_mask_component = gr.Image(
type='pil', image_mode='RGB', label='Input mask', format="png")
submit_button_component.click(
fn=process,
inputs=[
input_image_editor_component,
image_url,
mask_url,
blur_mask,
blur_factor,
lora_path,
lora_weights,
lora_scale,
trigger_word,
input_text_component,
seed_slicer_component,
randomize_seed_checkbox_component,
strength_slider_component,
num_inference_steps_slider_component
],
outputs=[
output_image_component,
output_mask_component
]
)
demo.launch(debug=False, show_error=True, share=False)
|