File size: 24,470 Bytes
fabaa3c
 
 
 
 
 
5865d17
 
 
 
 
 
fabaa3c
 
 
5865d17
 
fabaa3c
 
 
0fe027e
1001ad3
ad296b8
 
 
 
fabaa3c
5865d17
3dff02c
5865d17
 
1001ad3
ad296b8
 
 
ce441ed
fabaa3c
 
 
 
 
 
ad296b8
fabaa3c
 
 
 
ad296b8
fabaa3c
 
 
 
ad296b8
fabaa3c
 
7b9282e
 
ad296b8
7b9282e
 
8ee9612
 
50e18af
8ee9612
 
fabaa3c
 
50e18af
fabaa3c
 
 
 
ad296b8
 
fabaa3c
 
 
 
ad296b8
 
fabaa3c
 
 
 
ad296b8
 
fabaa3c
 
 
 
3dff02c
ad296b8
 
fabaa3c
ad296b8
fabaa3c
 
 
 
 
dd7d8ba
c5ecf2c
fabaa3c
dd7d8ba
fabaa3c
1c3458d
fabaa3c
dd7d8ba
 
5b3a290
0e92f07
ad296b8
 
0e92f07
fabaa3c
1ecfe13
ad296b8
 
1c3458d
ad296b8
 
 
 
1c3458d
 
 
 
 
 
ad296b8
 
 
 
 
 
 
 
 
 
fabaa3c
 
5c541d7
ad296b8
 
 
5e7db30
ad296b8
 
 
700b80f
5865d17
 
 
 
 
 
 
 
ad296b8
5865d17
fabaa3c
ad296b8
5865d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297327b
ad296b8
 
0c929f6
ad296b8
 
5d14293
ad296b8
 
 
 
297327b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001ad3
 
fabaa3c
1001ad3
 
 
 
eb2581c
fabaa3c
ad296b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0a2253
ad296b8
166c44c
ad296b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7d0207
ad296b8
 
 
 
 
 
 
 
 
 
de058f9
ad296b8
 
 
de058f9
15584ad
ad296b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f23ca18
 
 
 
3dff02c
f23ca18
3dff02c
f23ca18
 
ad296b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de058f9
ad296b8
 
 
 
 
 
 
15584ad
ad296b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15584ad
ad296b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
397998c
 
ad296b8
 
 
 
 
 
 
 
397998c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad296b8
fabaa3c
 
1001ad3
fabaa3c
 
 
ad296b8
 
fabaa3c
1001ad3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import os
import time
import requests
import random
from threading import Thread
from typing import List, Dict, Union
# import subprocess
# subprocess.run(
#     "pip install flash-attn --no-build-isolation",
#     env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
#     shell=True,
# )
import torch
import gradio as gr
from bs4 import BeautifulSoup
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from qwen_vl_utils import process_vision_info
from huggingface_hub import InferenceClient
from PIL import Image
import spaces
from functools import lru_cache
import re
import io 
import json
from gradio_client import Client, file
from groq import Groq

# Model and Processor Loading (Done once at startup)
MODEL_ID = "Qwen/Qwen2-VL-7B-Instruct"
model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16).to("cuda").eval()
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)

GROQ_API_KEY = os.environ.get("GROQ_API_KEY", None)

client_groq = Groq(api_key=GROQ_API_KEY)
        

# Path to example images
examples_path = os.path.dirname(__file__)
EXAMPLES = [
    [
        {
            "text": "What is Friction? Explain in Detail.",
        }
    ],
    [
        {
            "text": "Write me a Python function to generate unique passwords.",
        }
    ],
    [
        {
            "text": "What's the latest price of Bitcoin?",
        }
    ],
    [
        {
            "text": "Search and give me list of spaces trending on HuggingFace.",
        }
    ],
    [
        {
            "text": "Create a Beautiful Picture of Effiel at Night.",
        }
    ],
    [
        {
            "text": "Create image of cute cat.",
        }
    ],
    [
        {
            "text": "What unusual happens in this video.",
            "files": [f"{examples_path}/example_video/accident.gif"],
        }
    ],
    [
        {
            "text": "What's name of superhero in this clip",
            "files": [f"{examples_path}/example_video/spiderman.gif"],
        }
    ],
    [
        {
            "text": "What's written on this paper",
            "files": [f"{examples_path}/example_images/paper_with_text.png"],
        }
    ],
    [
        {
            "text": "Who are they? Tell me about both of them.",
            "files": [f"{examples_path}/example_images/elon_smoking.jpg",
                      f"{examples_path}/example_images/steve_jobs.jpg", ]
        }
    ]
]

# Set bot avatar image
BOT_AVATAR = "OpenAI_logo.png"

# Perform a Google search and return the results
@lru_cache(maxsize=128) 
def extract_text_from_webpage(html_content):
    """Extracts visible text from HTML content using BeautifulSoup."""
    soup = BeautifulSoup(html_content, "html.parser")
    for tag in soup(["script", "style", "header", "footer", "nav", "form", "svg"]):
        tag.extract()
    visible_text = soup.get_text(strip=True)
    return visible_text

# Perform a Google search and return the results
def search(query):
    term = query
    start = 0
    all_results = []
    max_chars_per_page = 8000
    with requests.Session() as session:
        resp = session.get(
            url="https://www.google.com/search",
            headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
            params={"q": term, "num": 4, "udm": 14},
            timeout=5,
            verify=None,
        )
        resp.raise_for_status()
        soup = BeautifulSoup(resp.text, "html.parser")
        result_block = soup.find_all("div", attrs={"class": "g"})
        for result in result_block:
            link = result.find("a", href=True)
            link = link["href"]
            try:
                webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False)
                webpage.raise_for_status()
                visible_text = extract_text_from_webpage(webpage.text)
                if len(visible_text) > max_chars_per_page:
                    visible_text = visible_text[:max_chars_per_page]
                all_results.append({"link": link, "text": visible_text})
            except requests.exceptions.RequestException:
                all_results.append({"link": link, "text": None})
    return all_results


def image_gen(prompt):
    client = Client("KingNish/Image-Gen-Pro")
    return client.predict("Image Generation",None, prompt, api_name="/image_gen_pro")

def video_gen(prompt):
    client = Client("KingNish/Instant-Video")
    return client.predict(prompt, api_name="/instant_video")

image_extensions = Image.registered_extensions()
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")

def qwen_inference(user_prompt, chat_history):
    images = []
    text_input = user_prompt["text"]

    # Handle multiple image uploads
    if user_prompt["files"]:
        images.extend(user_prompt["files"])
    else:
        for hist in chat_history:
            if type(hist[0]) == tuple:
                images.extend(hist[0]) 

    # System Prompt (Similar to LLaVA)
    SYSTEM_PROMPT = "You are OpenGPT 4o, an exceptionally capable and versatile AI assistant made by KingNish. Your task is to fulfill users query in best possible way. You are provided with image, videos and 3d structures as input with question your task is to give best possible detailed results to user according to their query. Reply the question asked by user properly and best possible way."

    messages = [{"role": "system", "content": SYSTEM_PROMPT}] 

    for image in images:
        if image.endswith(video_extensions):
            messages.append({
                "role": "user",
                "content": [
                    {"type": "video", "video": image},
                ]
            })

        if image.endswith(tuple([i for i, f in image_extensions.items()])):
            messages.append({
                "role": "user",
                "content": [
                    {"type": "image", "image": image},
                ]
            })

    # Add user text input 
    messages.append({
        "role": "user",
        "content": [
            {"type": "text", "text": text_input}
        ]
    })

    return messages

# Initialize inference clients for different models
client_mistral = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
client_mistral_nemo = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")

@spaces.GPU(duration=60, queue=False)
def model_inference( user_prompt, chat_history):
    if user_prompt["files"]:
        messages = qwen_inference(user_prompt, chat_history)
        text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt",
        ).to("cuda")
        
        streamer = TextIteratorStreamer(
        processor, skip_prompt=True, **{"skip_special_tokens": True}
    )
        generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
    
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
    
        buffer = ""
        for new_text in streamer:
            buffer += new_text
            yield buffer

    else: 
        func_caller = []
        message = user_prompt

        functions_metadata = [
            {"type": "function", "function": {"name": "web_search", "description": "Search query on google and find latest information, info about any person, object, place thing, everything that available on google.", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
            {"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER, with LLM like you. But it does not answer tough questions and latest info's.", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
            {"type": "function", "function": {"name": "hard_query", "description": "Reply tough query of USER, using powerful LLM. But it does not answer latest info's.", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
            {"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}}, "required": ["query"]}}},
            {"type": "function", "function": {"name": "video_generation", "description": "Generate video for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "video generation prompt"}}, "required": ["query"]}}},
            {"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
        ]

        for msg in chat_history:
            func_caller.append({"role": "user", "content": f"{str(msg[0])}"})
            func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"})

        message_text = message["text"]
        func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }}  </functioncall> , Reply in JSOn format, you can call only one function at a time, So, choose functions wisely. [USER] {message_text}'})
    
        response = client_mistral.chat_completion(func_caller, max_tokens=200)
        response = str(response)
        try:
            response = response[response.find("{"):response.index("</")]
        except:
            response = response[response.find("{"):(response.rfind("}")+1)]
        response = response.replace("\\n", "")
        response = response.replace("\\'", "'")
        response = response.replace('\\"', '"')
        response = response.replace('\\', '')
        print(f"\n{response}")
    
        try:
            json_data = json.loads(str(response))
            if json_data["name"] == "web_search":
                query = json_data["arguments"]["query"]

                gr.Info("Searching Web")
                yield "Searching Web"
                web_results = search(query)
                
                gr.Info("Extracting relevant Info")
                yield "Extracting Relevant Info"
                web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])

                try:
                    message_groq = []
                    message_groq.append({"role":"system", "content": "You are OpenGPT 4o a helpful and very powerful web assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured, Detailed and Better way, in Human Style. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You reply in detail like human, use short forms, structured format, friendly tone and emotions."})
                    for msg in chat_history:
                        message_groq.append({"role": "user", "content": f"{str(msg[0])}"})
                        message_groq.append({"role": "assistant", "content": f"{str(msg[1])}"})
                    message_groq.append({"role": "user", "content": f"[USER] {str(message_text)} ,  [WEB RESULTS] {str(web2)}"})
                    # its meta-llama/Meta-Llama-3.1-8B-Instruct
                    stream = client_groq.chat.completions.create(model="llama-3.1-8b-instant",  messages=message_groq, max_tokens=4096, stream=True)
                    output = ""
                    for chunk in stream:
                        content = chunk.choices[0].delta.content
                        if content:
                            output += chunk.choices[0].delta.content 
                            yield output
                except Exception as e:
                    messages = f"<|im_start|>system\nYou are OpenGPT 4o a helpful and very powerful chatbot web assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured, Better and in Human Way. You do not say Unnecesarry things. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply in details like human, use short forms, friendly tone and emotions.<|im_end|>"
                    for msg in chat_history:
                        messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
                        messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
                    messages+=f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
                    
                    stream = client_mixtral.text_generation(messages, max_new_tokens=4000, do_sample=True, stream=True, details=True, return_full_text=False)
                    output = ""
                    for response in stream:
                        if not response.token.text == "<|im_end|>":
                            output += response.token.text
                            yield output
            
            elif json_data["name"] == "image_generation":
                query = json_data["arguments"]["query"]
                gr.Info("Generating Image, Please wait 10 sec...")
                yield "Generating Image, Please wait 10 sec..."
                try:
                    image = image_gen(f"{str(query)}")
                    yield gr.Image(image[1])
                except:
                    client_flux = InferenceClient("black-forest-labs/FLUX.1-schnell")
                    seed = random.randint(0,999999)
                    image = client_flux.text_to_image(query, negative_prompt=f"{seed}")
                    yield gr.Image(image)
                    

            elif json_data["name"] == "video_generation":
                query = json_data["arguments"]["query"]
                gr.Info("Generating Video, Please wait 15 sec...")
                yield "Generating Video, Please wait 15 sec..."
                video = video_gen(f"{str(query)}")
                yield gr.Video(video)
                
            elif json_data["name"] == "image_qna":
                inputs = llava(user_prompt, chat_history)
                streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
                generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)

                thread = Thread(target=model.generate, kwargs=generation_kwargs)
                thread.start()
    
                buffer = ""
                for new_text in streamer:
                    buffer += new_text
                    yield buffer

            else:
                try:
                    message_groq = []
                    message_groq.append({"role":"system", "content": "You are OpenGPT 4o a helpful and powerful assistant made by KingNish. You answers users query in detail and structured format and style like human. You are also Expert in every field and also learn and try to answer from contexts related to previous question. You also try to show emotions using Emojis and reply like human, use short forms, structured manner, detailed explaination, friendly tone and emotions."})
                    for msg in chat_history:
                        message_groq.append({"role": "user", "content": f"{str(msg[0])}"})
                        message_groq.append({"role": "assistant", "content": f"{str(msg[1])}"})
                    message_groq.append({"role": "user", "content": f"{str(message_text)}"})
                    # its meta-llama/Meta-Llama-3.1-70B-Instruct
                    stream = client_groq.chat.completions.create(model="llama-3.1-70b-versatile",  messages=message_groq, max_tokens=4096, stream=True)
                    output = ""
                    for chunk in stream:
                        content = chunk.choices[0].delta.content
                        if content:
                            output += chunk.choices[0].delta.content 
                            yield output
                except Exception as e:
                    print(e)
                    try:
                        message_groq = []
                        message_groq.append({"role":"system", "content": "You are OpenGPT 4o a helpful and powerful assistant made by KingNish. You answers users query in detail and structured format and style like human. You are also Expert in every field and also learn and try to answer from contexts related to previous question. You also try to show emotions using Emojis and reply like human, use short forms, structured manner, detailed explaination, friendly tone and emotions."})
                        for msg in chat_history:
                            message_groq.append({"role": "user", "content": f"{str(msg[0])}"})
                            message_groq.append({"role": "assistant", "content": f"{str(msg[1])}"})
                        message_groq.append({"role": "user", "content": f"{str(message_text)}"})
                        # its meta-llama/Meta-Llama-3-70B-Instruct
                        stream = client_groq.chat.completions.create(model="llama3-70b-8192",  messages=message_groq, max_tokens=4096, stream=True)
                        output = ""
                        for chunk in stream:
                            content = chunk.choices[0].delta.content
                            if content:
                                output += chunk.choices[0].delta.content 
                                yield output
                    except Exception as e:
                        print(e)
                        message_groq = []
                        message_groq.append({"role":"system", "content": "You are OpenGPT 4o a helpful and powerful assistant made by KingNish. You answers users query in detail and structured format and style like human. You are also Expert in every field and also learn and try to answer from contexts related to previous question. You also try to show emotions using Emojis and reply like human, use short forms, structured manner, detailed explaination, friendly tone and emotions."})
                        for msg in chat_history:
                            message_groq.append({"role": "user", "content": f"{str(msg[0])}"})
                            message_groq.append({"role": "assistant", "content": f"{str(msg[1])}"})
                        message_groq.append({"role": "user", "content": f"{str(message_text)}"})
                        stream = client_groq.chat.completions.create(model="llama3-groq-70b-8192-tool-use-preview",  messages=message_groq, max_tokens=4096, stream=True)
                        output = ""
                        for chunk in stream:
                            content = chunk.choices[0].delta.content
                            if content:
                                output += chunk.choices[0].delta.content 
                                yield output
        except Exception as e:
            print(e)
            try:
                message_groq = []
                message_groq.append({"role":"system", "content": "You are OpenGPT 4o a helpful and powerful assistant made by KingNish. You answers users query in detail and structured format and style like human. You are also Expert in every field and also learn and try to answer from contexts related to previous question. You also try to show emotions using Emojis and reply like human, use short forms, structured manner, detailed explaination, friendly tone and emotions."})
                for msg in chat_history:
                    message_groq.append({"role": "user", "content": f"{str(msg[0])}"})
                    message_groq.append({"role": "assistant", "content": f"{str(msg[1])}"})
                message_groq.append({"role": "user", "content": f"{str(message_text)}"})
                # its meta-llama/Meta-Llama-3-70B-Instruct
                stream = client_groq.chat.completions.create(model="llama3-70b-8192",  messages=message_groq, max_tokens=4096, stream=True)
                output = ""
                for chunk in stream:
                    content = chunk.choices[0].delta.content
                    if content:
                        output += chunk.choices[0].delta.content 
                        yield output
            except Exception as e:
                print(e)
                try:
                    message_groq = []
                    message_groq.append({"role":"system", "content": "You are OpenGPT 4o a helpful and powerful assistant made by KingNish. You answers users query in detail and structured format and style like human. You are also Expert in every field and also learn and try to answer from contexts related to previous question. You also try to show emotions using Emojis and reply like human, use short forms, structured manner, detailed explaination, friendly tone and emotions."})
                    for msg in chat_history:
                        message_groq.append({"role": "user", "content": f"{str(msg[0])}"})
                        message_groq.append({"role": "assistant", "content": f"{str(msg[1])}"})
                    message_groq.append({"role": "user", "content": f"{str(message_text)}"})
                    # its meta-llama/Meta-Llama-3-8B-Instruct
                    stream = client_groq.chat.completions.create(model="llama3-8b-8192",  messages=message_groq, max_tokens=4096, stream=True)
                    output = ""
                    for chunk in stream:
                        content = chunk.choices[0].delta.content
                        if content:
                            output += chunk.choices[0].delta.content 
                            yield output
                except Exception as e:
                    print(e)
                    messages = f"<|im_start|>system\nYou are OpenGPT 4o a helpful and powerful assistant made by KingNish. You answers users query in detail and structured format and style like human. You are also Expert in every field and also learn and try to answer from contexts related to previous question. You also try to show emotions using Emojis and reply like human, use short forms, structured manner, detailed explaination, friendly tone and emotions.<|im_end|>"
                    for msg in chat_history:
                        messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
                        messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
                    messages+=f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>assistant\n"
                    stream = client_mixtral.text_generation(messages, max_new_tokens=4000, do_sample=True, stream=True, details=True, return_full_text=False)
                    output = ""
                    for response in stream:
                        if not response.token.text == "<|im_end|>":
                            output += response.token.text
                            yield output
                    
# Create a chatbot interface
chatbot = gr.Chatbot(
    label="OpenGPT-4o",
    avatar_images=[None, BOT_AVATAR],
    show_copy_button=True,
    likeable=True,
    layout="panel",
    height=400,
)
output = gr.Textbox(label="Prompt")