Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,28 @@
|
|
1 |
-
# Importer les bibliothèques nécessaires
|
2 |
import torch
|
3 |
-
from transformers import pipeline,
|
4 |
import gradio as gr
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
|
9 |
-
#
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
11 |
-
model = AutoModel.from_pretrained(
|
12 |
|
13 |
-
#
|
14 |
-
def
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# Générer une sortie avec le modèle
|
19 |
-
with torch.no_grad():
|
20 |
-
outputs = model(**inputs)
|
21 |
-
|
22 |
-
# Ici, vous pouvez ajouter du code pour générer un fichier audio
|
23 |
-
# À titre d'exemple, on retourne juste les embeddings générés
|
24 |
-
return outputs.last_hidden_state.mean().numpy()
|
25 |
|
26 |
-
#
|
27 |
-
interface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
#
|
30 |
interface.launch()
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import pipeline, AutoModel, AutoTokenizer
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# Load the model and tokenizer from Hugging Face
|
6 |
+
model_name = "openai/jukebox-1b-lyrics"
|
7 |
|
8 |
+
# Load tokenizer and model
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModel.from_pretrained(model_name, ignore_mismatched_sizes=True)
|
11 |
|
12 |
+
# Define a function for Gradio that uses the model to generate music
|
13 |
+
def generate_music(prompt):
|
14 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
15 |
+
outputs = model(**inputs)
|
16 |
+
return "Generated instrumental music or lyrics" # Replace with actual music processing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Set up Gradio interface
|
19 |
+
interface = gr.Interface(
|
20 |
+
fn=generate_music,
|
21 |
+
inputs="text",
|
22 |
+
outputs="text",
|
23 |
+
title="Jukebox Music Generator",
|
24 |
+
description="Enter a prompt to generate instrumental music using the Jukebox 1B Lyrics model."
|
25 |
+
)
|
26 |
|
27 |
+
# Launch the interface
|
28 |
interface.launch()
|