File size: 8,805 Bytes
b302612
 
 
 
 
 
 
26dede0
 
 
 
 
 
 
 
b302612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c21019
 
b302612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import cv2
import numpy as np
from PIL import Image
from path import Path
import streamlit as st
from typing import Tuple
import easyocr  # Import EasyOCR

from pathlib import Path
import sys

# Add the 'app' directory to the sys.path
# Assuming 'app' is in the current working directory
sys.path.append(str(Path(__file__).parent / 'app'))
from app.dataloader_iam import Batch
from app.model import Model, DecoderType
from app.preprocessor import Preprocessor
from streamlit_drawable_canvas import st_canvas

# Set page config at the very beginning (only executed once)
st.set_page_config(
    page_title="HTR App",
    page_icon=":pencil:",
    layout="centered",
    initial_sidebar_state="auto",
)

ms = st.session_state
if "themes" not in ms: 
  ms.themes = {"current_theme": "light",
                    "refreshed": True,
                    
                    "light": {"theme.base": "dark",
                              "theme.backgroundColor": "black",
                              "theme.primaryColor": "#c98bdb",
                              "theme.secondaryBackgroundColor": "#5591f5",
                              "theme.textColor": "white",
                              "theme.textColor": "white",
                              "button_face": "🌜"},

                    "dark":  {"theme.base": "light",
                              "theme.backgroundColor": "white",
                              "theme.primaryColor": "#5591f5",
                              "theme.secondaryBackgroundColor": "#82E1D7",
                              "theme.textColor": "#0a1464",
                              "button_face": "🌞"},
                    }
  

def ChangeTheme():
  previous_theme = ms.themes["current_theme"]
  tdict = ms.themes["light"] if ms.themes["current_theme"] == "light" else ms.themes["dark"]
  for vkey, vval in tdict.items(): 
    if vkey.startswith("theme"): st._config.set_option(vkey, vval)

  ms.themes["refreshed"] = False
  if previous_theme == "dark": ms.themes["current_theme"] = "light"
  elif previous_theme == "light": ms.themes["current_theme"] = "dark"


btn_face = ms.themes["light"]["button_face"] if ms.themes["current_theme"] == "light" else ms.themes["dark"]["button_face"]
st.button(btn_face, on_click=ChangeTheme)

if ms.themes["refreshed"] == False:
  ms.themes["refreshed"] = True
  st.rerun()


def get_img_size(line_mode: bool = False) -> Tuple[int, int]:
    """
    Auxiliary method that sets the height and width
    Height is fixed while width is set according to the Model used.
    """
    if line_mode:
        return 256, get_img_height()
    return 128, get_img_height()

def get_img_height() -> int:
    """
    Auxiliary method that sets the height, which is fixed for the Neural Network.
    """
    return 32

def infer(line_mode: bool, model: Model, fn_img: Path) -> None:
    """
    Auxiliary method that does inference using the pretrained models:
    Recognizes text in an image given its path.
    """
    img = cv2.imread(fn_img, cv2.IMREAD_GRAYSCALE)
    assert img is not None

    preprocessor = Preprocessor(get_img_size(line_mode), dynamic_width=True, padding=16)
    img = preprocessor.process_img(img)

    batch = Batch([img], None, 1)
    recognized, probability = model.infer_batch(batch, True)
    return [recognized, probability]

def infer_super_model(image_path) -> None:
    reader = easyocr.Reader(['en'])  # Initialize EasyOCR reader
    result = reader.readtext(image_path)
    recognized_texts = [text[1] for text in result]  # Extract recognized texts
    probabilities = [text[2] for text in result]  # Extract probabilities
    return recognized_texts, probabilities



def main():

    st.title('Extract text from Image Demo')
    
    st.markdown("""
    Streamlit Web Interface for Handwritten Text Recognition (HTR), Optical Character Recognition (OCR) 
                implemented with TensorFlow and trained on the IAM off-line HTR dataset. 
                The model takes images of single words or text lines (multiple words) as input and outputs the recognized text. 
    """, unsafe_allow_html=True)
    
    st.markdown("""
    Predictions can be made using one of two models:
    - Single_Model (Trained on Single Word Images) 
    - Line_Model (Trained on Text Line Images)    
    - Super_Model ( Most Robust Option for English )
    - Burmese (Link)
    """, unsafe_allow_html=True)

    st.subheader('Select a Model, Choose the Arguments and Draw in the box below or Upload an Image to obtain a prediction.')

    #Selectors for the model and decoder
    modelSelect = st.selectbox("Select a Model", ['Single_Model', 'Line_Model', 'Super_Model'])
    

    if modelSelect != 'Super_Model':
        decoderSelect = st.selectbox("Select a Decoder", ['Bestpath', 'Beamsearch', 'Wordbeamsearch'])


    #Mappings (dictionaries) for the model and decoder. Asigns the directory or the DecoderType of the selected option.
    modelMapping = {
        "Single_Model": '../model/word-model',
        "Line_Model": '../model/line-model'
    }

    decoderMapping = {
        'Bestpath': DecoderType.BestPath,
        'Beamsearch': DecoderType.BeamSearch,
        'Wordbeamsearch': DecoderType.WordBeamSearch
    }

    #Slider for pencil width
    strokeWidth = st.slider("Stroke Width: ", 1, 25, 6)

    #Canvas/Text Box for user input. BackGround Color must be white (#FFFFFF) or else text will not be properly recognised.
    inputDrawn = st_canvas(
        fill_color="rgba(255, 165, 0, 0.3)", 
        stroke_width=strokeWidth,
        update_streamlit=True,
        background_image=None,
        height = 200,
        width = 400,
        drawing_mode='freedraw',
        key="canvas",
        background_color = '#FFFFFF'
    )

    #Buffer for user input (images uploaded from the user's device)
    inputBuffer = st.file_uploader("Upload an Image", type=["png"])

    #Inference Button
    inferBool = st.button("Recognize Text")

    # After clicking the "Recognize Text" button, check if the model selected is Super_Model
    if inferBool:
        if modelSelect == 'Super_Model':
            inputArray = None  # Initialize inputArray to None

            # Handling uploaded file
            if inputBuffer is not None:
                with Image.open(inputBuffer).convert('RGB') as img:
                    inputArray = np.array(img)

            # Handling canvas data
            elif inputDrawn.image_data is not None:
                # Convert RGBA to RGB
                inputArray = cv2.cvtColor(np.array(inputDrawn.image_data, dtype=np.uint8), cv2.COLOR_RGBA2RGB)

            # Now check if inputArray has been set
            if inputArray is not None:
                # Initialize EasyOCR Reader
                reader = easyocr.Reader(['en'])  # Assuming English language; adjust as necessary
                # Perform OCR
                results = reader.readtext(inputArray)

                # Display results
                all_text = ''
                for (bbox, text, prob) in results:
                    all_text += f'{text} (confidence: {prob:.2f})\n'

                st.write("**Recognized Texts and their Confidence Scores:**")
                st.text(all_text)
            else:
                st.write("No image data found. Please upload an image or draw on the canvas.")


        else:
            # Handle other model selections as before
            if ((inputDrawn.image_data is not None or inputBuffer is not None) and inferBool == True):
                #We turn the input into a numpy array
                if inputDrawn.image_data is not None:
                    inputArray = np.array(inputDrawn.image_data)
                
                if inputBuffer is not None:
                    inputBufferImage = Image.open(inputBuffer)
                    inputArray = np.array(inputBufferImage)

                #We turn this array into a .png format and save it. 
                inputImage = Image.fromarray(inputArray.astype('uint8'), 'RGBA')
                inputImage.save('userInput.png')
                #We obtain the model directory and the decoder type from their mapping
                modelDir = modelMapping[modelSelect]
                decoderType = decoderMapping[decoderSelect]

                #Finally, we call the model with this image as attribute and display the Best Candidate and its probability on the Interface
                model = Model(list(open(modelDir + "/charList.txt").read()), modelDir, decoderType, must_restore=True)
                inferedText = infer(modelDir == '../model/line-model', model, 'userInput.png')

                st.write("**Best Candidate: **", inferedText[0][0])
                st.write("**Probability: **", str(inferedText[1][0]*100) + "%")

if __name__ == "__main__":
    main()