File size: 8,516 Bytes
de36b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a46cb3f
de36b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388d884
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
from transformers import ViltProcessor, ViltForQuestionAnswering
import torch


import gradio as gr
import torch
import copy
import time
import requests
import io
import numpy as np
import re

from PIL import Image

from vilt.config import ex
from vilt.modules import ViLTransformerSS

from vilt.modules.objectives import cost_matrix_cosine, ipot
from vilt.transforms import pixelbert_transform
from vilt.datamodules.datamodule_base import get_pretrained_tokenizer


@ex.automain
def main(_config):
    _config = copy.deepcopy(_config)

    loss_names = {
        "itm": 0,
        "mlm": 0.5,
        "mpp": 0,
        "vqa": 0,
        "imgcls": 0,
        "nlvr2": 0,
        "irtr": 0,
        "arc": 0,
    }
    tokenizer = get_pretrained_tokenizer(_config["tokenizer"])

    _config.update(
        {
            "loss_names": loss_names,
        }
    )

    model = ViLTransformerSS(_config)
    model.setup("test")
    model.eval()

    device = "cpu"
    model.to(device)

    def infer(url, mp_text, hidx):
        try:
            res = requests.get(url)
            image = Image.open(io.BytesIO(res.content)).convert("RGB")
            img = pixelbert_transform(size=384)(image)
            img = img.unsqueeze(0).to(device)
        except:
            return False

        batch = {"text": [""], "image": [None]}
        tl = len(re.findall("\[MASK\]", mp_text))
        inferred_token = [mp_text]
        batch["image"][0] = img

        with torch.no_grad():
            for i in range(tl):
                batch["text"] = inferred_token
                encoded = tokenizer(inferred_token)
                batch["text_ids"] = torch.tensor(encoded["input_ids"]).to(device)
                batch["text_labels"] = torch.tensor(encoded["input_ids"]).to(device)
                batch["text_masks"] = torch.tensor(encoded["attention_mask"]).to(device)
                encoded = encoded["input_ids"][0][1:-1]
                infer = model(batch)
                mlm_logits = model.mlm_score(infer["text_feats"])[0, 1:-1]
                mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1)
                mlm_values[torch.tensor(encoded) != 103] = 0
                select = mlm_values.argmax().item()
                encoded[select] = mlm_ids[select].item()
                inferred_token = [tokenizer.decode(encoded)]

        selected_token = ""
        encoded = tokenizer(inferred_token)

        if hidx > 0 and hidx < len(encoded["input_ids"][0][:-1]):
            with torch.no_grad():
                batch["text"] = inferred_token
                batch["text_ids"] = torch.tensor(encoded["input_ids"]).to(device)
                batch["text_labels"] = torch.tensor(encoded["input_ids"]).to(device)
                batch["text_masks"] = torch.tensor(encoded["attention_mask"]).to(device)
                infer = model(batch)
                txt_emb, img_emb = infer["text_feats"], infer["image_feats"]
                txt_mask, img_mask = (
                    infer["text_masks"].bool(),
                    infer["image_masks"].bool(),
                )
                for i, _len in enumerate(txt_mask.sum(dim=1)):
                    txt_mask[i, _len - 1] = False
                txt_mask[:, 0] = False
                img_mask[:, 0] = False
                txt_pad, img_pad = ~txt_mask, ~img_mask

                cost = cost_matrix_cosine(txt_emb.float(), img_emb.float())
                joint_pad = txt_pad.unsqueeze(-1) | img_pad.unsqueeze(-2)
                cost.masked_fill_(joint_pad, 0)

                txt_len = (txt_pad.size(1) - txt_pad.sum(dim=1, keepdim=False)).to(
                    dtype=cost.dtype
                )
                img_len = (img_pad.size(1) - img_pad.sum(dim=1, keepdim=False)).to(
                    dtype=cost.dtype
                )
                T = ipot(
                    cost.detach(),
                    txt_len,
                    txt_pad,
                    img_len,
                    img_pad,
                    joint_pad,
                    0.1,
                    1000,
                    1,
                )

                plan = T[0]
                plan_single = plan * len(txt_emb)
                cost_ = plan_single.t()

                cost_ = cost_[hidx][1:].cpu()

                patch_index, (H, W) = infer["patch_index"]
                heatmap = torch.zeros(H, W)
                for i, pidx in enumerate(patch_index[0]):
                    h, w = pidx[0].item(), pidx[1].item()
                    heatmap[h, w] = cost_[i]

                heatmap = (heatmap - heatmap.mean()) / heatmap.std()
                heatmap = np.clip(heatmap, 1.0, 3.0)
                heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())

                _w, _h = image.size
                overlay = Image.fromarray(np.uint8(heatmap * 255), "L").resize(
                    (_w, _h), resample=Image.NEAREST
                )
                image_rgba = image.copy()
                image_rgba.putalpha(overlay)
                image = image_rgba

                selected_token = tokenizer.convert_ids_to_tokens(
                    encoded["input_ids"][0][hidx]
                )

        return [np.array(image), inferred_token[0], selected_token]

    inputs = [
        gr.inputs.Textbox(
            label="Url of an image.",
            lines=5,
        ),
        gr.inputs.Textbox(label="Caption with [MASK] tokens to be filled.", lines=5),
        gr.inputs.Slider(
            minimum=0,
            maximum=38,
            step=1,
            label="Index of token for heatmap visualization (ignored if zero)",
        ),
    ]
    outputs = [
        gr.outputs.Image(label="Image"),
        gr.outputs.Textbox(label="description"),
        gr.outputs.Textbox(label="selected token"),
    ]

    interface = gr.Interface(
        fn=infer,
        inputs=inputs,
        outputs=outputs,
        examples=[
            [
                "https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
                "a display of flowers growing out and over the [MASK] [MASK] in front of [MASK] on a [MASK] [MASK].",
                0,
            ],
            [
                "https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
                "a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.",
                4,
            ],
            [
                "https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
                "a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.",
                11,
            ],
            [
                "https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
                "a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.",
                15,
            ],
            [
                "https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
                "a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.",
                18,
            ],
            [
                "https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg",
                "a room with a [MASK], a [MASK], a [MASK], and a [MASK].",
                0,
            ],
            [
                "https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg",
                "a room with a rug, a chair, a painting, and a plant.",
                5,
            ],
            [
                "https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg",
                "a room with a rug, a chair, a painting, and a plant.",
                8,
            ],
            [
                "https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg",
                "a room with a rug, a chair, a painting, and a plant.",
                11,
            ],
            [
                "https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg",
                "a room with a rug, a chair, a painting, and a plant.",
                15,
            ],
        ],
    )

    interface.launch(debug=True)
    
    
ex.run()