File size: 10,053 Bytes
85f688c
 
 
 
 
092865c
85f688c
46a9783
092865c
46a9783
85f688c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a049b8
85f688c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6270cb3
 
83ff097
6270cb3
 
 
83ff097
6270cb3
 
 
 
 
 
 
 
 
 
 
 
83ff097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f688c
6270cb3
 
85f688c
46a9783
85f688c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a9783
85f688c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a9783
85f688c
 
 
 
 
 
 
 
 
9a049b8
 
85f688c
 
12cf43d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from transformers import AutoProcessor, AutoModelForCausalLM, BitsAndBytesConfig
import torch
from PIL import Image
import requests
import traceback
import os

from huggingface_hub import login
login(token=os.getenv("HF_TOKEN"))

class Image2Text:
    def __init__(self):
        # Load the GIT coco model
        preprocessor_git_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
        model_git_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")

        self.device = "cuda" if torch.cuda.is_available() else "cpu"

        self.preprocessor = preprocessor_git_large_coco
        self.model = model_git_large_coco
        self.model.to(self.device)


    def image_description(
        self,
        image_url,
        max_length=50,
        temperature=0.1,
        use_sample_image=False,
    ):
        """
        Generate captions for the given image.

        -----
        Parameters
        image_url: Image URL
            The image to generate captions for.
        max_length: int
            The max length of the generated descriptions.

        -----
        Returns
        str
            The generated image description.
        """
        caption_git_large_coco = ""

        if use_sample_image:
            image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"

        image = Image.open(requests.get(image_url, stream=True).raw)

        # Generate captions for the image using the GIT coco model
        try:
            caption_git_large_coco = self._generate_description(image, max_length, False).strip()
            return caption_git_large_coco

        except Exception as e:
            print(e)
            traceback.print_exc()


    def _generate_description(
        self,
        image,
        max_length=50,
        use_float_16=False,
    ):
        """
        Generate captions for the given image.

        -----
        Parameters
        image: PIL.Image
            The image to generate captions for.
        max_length: int
            The max length of the generated descriptions.
        use_float_16: bool
            Whether to use float16 precision. This can speed up inference, but may lead to worse results.

        -----
        Returns
        str
            The generated caption.
        """
        # inputs = preprocessor(image, return_tensors="pt").to(device)
        pixel_values = self.preprocessor(images=image, return_tensors="pt").pixel_values.to(self.device)
        generated_ids = self.model.generate(
            pixel_values=pixel_values,
            max_length=max_length,
        )
        generated_caption = self.preprocessor.batch_decode(generated_ids, skip_special_tokens=True)[0]
        return generated_caption
    
import json
from pprint import pprint

import bitsandbytes as bnb
import pandas as pd

import torch
import torch.nn as nn
import transformers
from datasets import load_dataset
from huggingface_hub import notebook_login
from peft import (
  LoraConfig ,
  PeftConfig ,
  PeftModel ,
  get_peft_model ,
  prepare_model_for_kbit_training,
)
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
from peft import LoraConfig, get_peft_model


os.environ["CUDA_VISIBLE_DEVICES"] = "0"

class Social_Media_Captioner:
    def __init__(self, use_finetuned: bool=True, temp=0.1):
        self.use_finetuned = use_finetuned
        self.MODEL_NAME = "vilsonrodrigues/falcon-7b-instruct-sharded"
        self.peft_model_name = "ayush-vatsal/caption_qlora_finetune"
        self.model_loaded = False
        self.device = "cuda:0"

        self._load_model()

        self.generation_config = self.model.generation_config
        self.generation_config.max_new_tokens = 50
        self.generation_config.temperature = temp
        self.generation_config.top_p = 0.7
        self.generation_config.num_return_sequences = 1
        self.generation_config.pad_token_id = self.tokenizer.eos_token_id
        self.generation_config.eos_token_id = self.tokenizer.eos_token_id

        self.cache: list[dict] = [] # [{"image_decription": "A man", "caption": ["A man"]}]


    def _load_model(self):
        self.bnb_config = BitsAndBytesConfig(
            load_in_4bit = True,
            llm_int8_enable_fp32_cpu_offload=True,
            bnb_4bit_use_double_quant = True,
            bnb_4bit_quant_type= "nf4",
            bnb_4bit_compute_dtype=torch.bfloat16,
            load_in_8bit_fp32_cpu_offload=True
            )
        self.model = AutoModelForCausalLM.from_pretrained(
            self.MODEL_NAME,
            device_map = "auto",
            trust_remote_code = True,
            quantization_config = self.bnb_config
            )

        # Defining the tokenizers
        self.tokenizer = AutoTokenizer.from_pretrained(self.MODEL_NAME)
        self.tokenizer.pad_token = self.tokenizer.eos_token

        # if self.use_finetuned:
        #     # LORA Config Model
        #     self.lora_config = LoraConfig(
        #         r=16,
        #         lora_alpha=32,
        #         target_modules=["query_key_value"],
        #         lora_dropout=0.05,
        #         bias="none",
        #         task_type="CAUSAL_LM"
        #     )
        #     self.model = get_peft_model(self.model, self.lora_config)

        #     # Fitting the adapters
        #     self.peft_config = PeftConfig.from_pretrained(self.peft_model_name)
        #     self.model = AutoModelForCausalLM.from_pretrained(
        #         self.peft_config.base_model_name_or_path,
        #         return_dict = True,
        #         quantization_config = self.bnb_config,
        #         device_map= "auto",
        #         trust_remote_code = True
        #         )
        #     self.model = PeftModel.from_pretrained(self.model, self.peft_model_name)

        #     # Defining the tokenizers
        #     self.tokenizer = AutoTokenizer.from_pretrained(self.peft_config.base_model_name_or_path)
        #     self.tokenizer.pad_token = self.tokenizer.eos_token

        self.model_loaded = True
        print("Model Loaded successfully")

    def inference(self, input_text: str, use_cached=True, cache_generation=True) -> str | None:
        if not self.model_loaded:
            raise Exception("Model not loaded")

        try:
            prompt = Social_Media_Captioner._prompt(input_text)
            if use_cached:
                for item in self.cache:
                    if item['image_description'] == input_text:
                        return item['caption']

            encoding = self.tokenizer(prompt, return_tensors = "pt").to(self.device)
            with torch.inference_mode():
                outputs = self.model.generate(
                    input_ids = encoding.input_ids,
                    attention_mask = encoding.attention_mask,
                    generation_config = self.generation_config
                )
                generated_caption = (self.tokenizer.decode(outputs[0], skip_special_tokens=True).split('Caption: "')[-1]).split('"')[0]

                if cache_generation:
                    for item in self.cache:
                        if item['image_description'] == input_text:
                            item['caption'].append(generated_caption)
                            break
                    else:
                        self.cache.append({
                            'image_description': input_text,
                            'caption': [generated_caption]
                        })

                return generated_caption
        except Exception as e:
            print(e)
            return None


    def _prompt(input_text="A man walking alone in the road"):
        if input_text is None:
            raise Exception("Enter a valid input text to generate a valid prompt")

        return f"""
            Convert the given image description to a appropriate metaphoric caption
            Description: {input_text}
            Caption:
            """.strip()

    @staticmethod
    def get_trainable_parameters(model):
        trainable_params = 0
        all_param = 0
        for _, param in model.named_parameters():
            all_param += param.numel()
            if param.requires_grad:
                trainable_params += param.numel()
        return f"trainable_params: {trainable_params} || all_params: {all_param} || Percentage of trainable params: {100*trainable_params / all_param}"


    def __repr__(self):
        return f"""
        Base Model Name: {self.MODEL_NAME}
        PEFT Model Name: {self.peft_model_name}
        Using PEFT Finetuned Model: {self.use_finetuned}
        Model: {self.model}

        ------------------------------------------------------------

        {Social_Media_Captioner.get_trainable_parameters(self.model)}
        """
    
class Captions:
    def __init__(self, use_finetuned_LLM: bool=True, temp_LLM=0.1):
        self.image_to_text = Image2Text()
        self.LLM = Social_Media_Captioner(use_finetuned_LLM, temp_LLM)

    def generate_captions(
        self,
        image,
        image_url=None,
        max_length_GIT=50,
        temperature_GIT=0.1,
        use_sample_image_GIT=False,
        use_cached_LLM=True,
        cache_generation_LLM=True
    ):
        if image_url:
            image_description = self.image_to_text.image_description(image_url, max_length=max_length_GIT, temperature=temperature_GIT, use_sample_image=use_sample_image_GIT)
        else:
            image_description = self.image_to_text._generate_description(image, max_length=max_length_GIT)
        captions = self.LLM.inference(image_description, use_cached=use_cached_LLM, cache_generation=cache_generation_LLM)
        return captions

caption_generator = Captions()

import gradio as gr

def setup(image):
    return caption_generator.generate_captions(image = image)

iface = gr.Interface(
    fn=setup,
    inputs=gr.inputs.Image(type="pil", label="Upload Image"),
    outputs=gr.outputs.Textbox(label="Caption")
)

iface.launch()