File size: 9,535 Bytes
2c2e788
0497fcb
09b80dc
2c2e788
 
 
 
 
 
0497fcb
09b80dc
2c2e788
 
4ccff9f
2c2e788
d2f4f1c
4ccff9f
09b80dc
2c2e788
e3e52e9
09b80dc
 
 
 
834844c
f18dd2a
a8a481c
f18dd2a
a8a481c
f18dd2a
a8a481c
f18dd2a
834844c
e3e52e9
a8a481c
e3e52e9
a8a481c
e3e52e9
 
 
 
 
a8a481c
e3e52e9
 
 
 
34f951b
834844c
 
7d0a39c
834844c
a8a481c
7d0a39c
834844c
 
 
 
a8a481c
 
 
 
834844c
 
e3e52e9
a8a481c
f18dd2a
 
 
834844c
f18dd2a
 
 
834844c
e3e52e9
 
 
 
 
 
 
 
 
 
 
 
 
 
34f951b
834844c
 
7d0a39c
834844c
 
7d0a39c
834844c
 
 
 
a8a481c
834844c
a8a481c
834844c
 
 
e3e52e9
 
 
08cbdf8
 
4ccff9f
08cbdf8
 
 
 
 
 
 
 
 
2c2e788
834844c
 
 
 
 
2c2e788
 
e3e52e9
4ccff9f
834844c
7b6f638
834844c
 
 
8313c30
e3e52e9
834844c
 
 
2c2e788
 
0497fcb
09b80dc
0497fcb
 
09b80dc
 
0497fcb
 
 
 
2c2e788
b01ef75
8313c30
09b80dc
e3e52e9
7b6f638
34f951b
8313c30
2c2e788
b01ef75
2c2e788
e3e52e9
 
0497fcb
2c2e788
 
 
0497fcb
 
 
 
 
2c2e788
 
 
0497fcb
08cbdf8
e3e52e9
08cbdf8
0497fcb
08cbdf8
0497fcb
4ccff9f
08cbdf8
2c2e788
e3e52e9
2c2e788
e3e52e9
2c2e788
e3e52e9
2c2e788
 
 
0497fcb
 
2c2e788
 
a8a481c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import uuid
import logging

import gradio as gr

from llmriddles.questions import QuestionExecutor
from llmriddles.questions import list_ordered_questions

_QUESTION_IDS = {}
count = 0
_QUESTIONS = list_ordered_questions()
_LANG = os.environ.get('QUESTION_LANG', 'cn')
assert _LANG in ['cn', 'en'], _LANG
_LLM = os.environ.get('QUESTION_LLM', 'chatgpt')
assert _LLM in ['chatgpt', 'mistral-7b'], _LLM
_LLM_KEY = os.environ.get('QUESTION_LLM_KEY', None)
_DEBUG = os.environ.get('DEBUG', 'false').lower() == 'true'

if _LANG == "cn":
    if _DEBUG:
        logging.getLogger().setLevel(logging.INFO)
    else:
        logging.getLogger().setLevel(logging.WARNING)
    title = "完蛋!我被 LLM 拿捏了"
    requirement_ph = """
    欢迎来到 LLM Riddles!

    你将通过本游戏对大语言模型产生更深刻的理解。在本游戏中,你需要构造一个提给语言大模型的问题,使得它回复的答案符合题目要求。

    点击\"下一题\"即可开始游戏
    """
    requirement_label = "游戏须知/说明"
    question_ph = "你对大语言模型的提问"
    question_label = "玩家提问栏"
    answer_ph = "大语言模型的回答"
    answer_label = "大语言模型回答栏"
    submit_label = "提交"
    next_label = "下一题"
    api_ph = "你个人的大语言模型 API Key (例如:ChatGPT)"
    api_label = "API key"
    predict_label = "结果正确性"
    explanation_label = "结果详细解释"
    game_cleared_label = "祝贺!你已成功通关!"
    correct_label = "正确"
    wrong_label = "错误"
    api_error_info = "请在提交问题之前先输入你的 API Key"
    try_again_label = "再玩一次"
    title_markdown = """
    <div align="center">
        <img src="https://raw.githubusercontent.com/opendilab/LLMRiddles/main/llmriddles/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
    </div>
    <h2 style="text-align: center; color: black;"><a href="https://github.com/OpenDILab"> 🎭LLM Riddles:完蛋!我被 LLM 拿捏了</a></h2>
    <h4 align="center"> 如果你喜欢这个项目,请给我们在 GitHub 点个 star ✨ 。我们将会持续保持更新。再次感谢游戏<a href="https://www.zhihu.com/people/haoqiang-fan"> 原作者 </a>的奇思妙想!  </h4>
    <strong><h5 align="center">注意:算法模型的输出可能包含一定的随机性。相关结果不代表任何开发者和相关 AI 服务的态度和意见。本项目开发者不对生成结果作任何保证,仅供娱乐。<h5></strong>
    """
    tos_markdown = """
    ### 使用条款
    玩家使用本服务须同意以下条款:
    该服务是一项探索性研究预览版,仅供非商业用途。它仅提供有限的安全措施,并可能生成令人反感的内容。不得将其用于任何非法、有害、暴力、种族主义等目的。该服务可能会收集玩家对话数据以供未来研究之用。
    如果您的游玩体验有不佳之处,请发送邮件至 opendilab@pjlab.org.cn ! 我们将删除相关信息,并不断改进这个项目。
    为了获得最佳体验,请使用台式电脑进行此预览版游戏,因为移动设备可能会影响可视化效果。
    **版权所有 2023 OpenDILab。**
    """
elif _LANG == "en":
    title = "LLM Riddles: Oops! Rolling in LLM."
    requirement_ph = """
    Welcome to LLM Riddles!

    In this game, you'll gain a deeper understanding of language models. Your challenge is to create a question to ask a language model in a way that the answer it provides meets specific criteria.

    Click \'Next\' to Start
    """
    requirement_label = "Game Requirements"
    question_ph = "Your Question for LLM"
    question_label = "Question"
    answer_ph = "Answer From LLM"
    answer_label = "Answer"
    submit_label = "Submit"
    next_label = "Next"
    api_ph = "Your API Key (e.g. ChatGPT)"
    api_label = "API key"
    predict_label = "Correctness"
    explanation_label = "Explanation"
    game_cleared_label = "Congratulations!"
    correct_label = "Correct"
    wrong_label = "Wrong"
    api_error_info = "Please Enter API Key Before Submitting Question."
    try_again_label = "Try Again"
    title_markdown = """
    <div align="center">
        <img src="https://raw.githubusercontent.com/opendilab/LLMRiddles/main/llmriddles/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
    </div>
    <h2 style="text-align: center; color: black;"><a href="https://github.com/OpenDILab"> 🎭LLM Riddles: Oops! Rolling in LLM.</a></h2>
    <h4 align="center"> If you like our project, please give us a star ✨ on GitHub for latest update. Thanks for the interesting idea of the original game <a href="https://www.zhihu.com/people/haoqiang-fan"> author </a>.  </h4>
    <strong><h5 align="center">Notice: The output is generated by algorithm scheme and may involve some randomness. It does not represent the attitudes and opinions of any developers and AI services in this project. We do not make any guarantees about the generated content.<h5></strong>
    """
    tos_markdown = """
    ### Terms of use
    By using this service, players are required to agree to the following terms:
    The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
    Please send email to opendilab@pjlab.org.cn if you get any inappropriate answer! We will delete those and keep improving our moderator.
    For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
    **Copyright 2023 OpenDILab.**
    """
else:
    raise KeyError("invalid _LANG: {}".format(_LANG))


def _need_api_key():
    return _LLM == 'chatgpt' and _LLM_KEY is None


def _get_api_key_cfgs(api_key):
    if _LLM == 'chatgpt':
        return {'api_key': api_key}
    else:
        return {}


if __name__ == '__main__':
    with gr.Blocks(title=title, theme='ParityError/Interstellar') as demo:
        gr.Markdown(title_markdown)

        with gr.Row():
            gr_requirement = gr.TextArea(placeholder=requirement_ph, label=requirement_label, lines=4)
        with gr.Row():
            with gr.Column():
                gr_question = gr.TextArea(placeholder=question_ph, label=question_label)
                gr_api_key = gr.Text(placeholder=api_ph, label=api_label, type='password', visible=_need_api_key())
                with gr.Row():
                    gr_submit = gr.Button(submit_label, interactive=False)
                    gr_next = gr.Button(next_label)

            with gr.Column():
                gr_uuid = gr.Text(value='', visible=False)
                gr_predict = gr.Label(label=predict_label)
                gr_answer = gr.TextArea(label=answer_label, lines=3)
                gr_explanation = gr.TextArea(label=explanation_label, lines=1)
        gr.Markdown(tos_markdown)


        def _next_question(uuid_):
            global count
            if not uuid_:
                uuid_ = str(uuid.uuid4())
                count += 1
                logging.info(f'Player {count} starts the game now')
            global _QUESTION_IDS
            _qid = _QUESTION_IDS.get(uuid_, -1)
            _qid += 1
            _QUESTION_IDS[uuid_] = _qid

            if _qid >= len(_QUESTIONS):
                del _QUESTION_IDS[uuid_]
                logging.info(f'Player {count} has passed the game now')
                return game_cleared_label, '', '', {}, '', \
                    gr.Button(submit_label, interactive=False), \
                    gr.Button(try_again_label, interactive=True), \
                    ''
            else:
                executor = QuestionExecutor(_QUESTIONS[_qid], _LANG)
                return executor.question_text, '', '', {}, '', \
                    gr.Button(submit_label, interactive=True), \
                    gr.Button(next_label, interactive=False), \
                    uuid_

        gr_next.click(
            fn=_next_question,
            inputs=[gr_uuid],
            outputs=[
                gr_requirement, gr_question, gr_answer,
                gr_predict, gr_explanation, gr_submit, gr_next, gr_uuid,
            ],
        )


        def _submit_answer(qs_text: str, api_key: str, uuid_: str):
            if _need_api_key() and not api_key:
                raise gr.Error(api_error_info)

            _qid = _QUESTION_IDS[uuid_]
            executor = QuestionExecutor(
                _QUESTIONS[_qid], _LANG,
                llm=_LLM, llm_cfgs=_get_api_key_cfgs(api_key) if _need_api_key() else {'api_key': _LLM_KEY}
            )
            answer_text, correctness, explanation = executor.check(qs_text)
            labels = {correct_label: 1.0} if correctness else {wrong_label: 1.0}
            if correctness:
                return answer_text, labels, explanation, gr.Button(next_label, interactive=True), uuid_
            else:
                return answer_text, labels, explanation, gr.Button(next_label, interactive=False), uuid_

        gr_submit.click(
            _submit_answer,
            inputs=[gr_question, gr_api_key, gr_uuid],
            outputs=[gr_answer, gr_predict, gr_explanation, gr_next, gr_uuid],
        )

    concurrency = int(os.environ.get('CONCURRENCY', os.cpu_count()))
    demo.queue().launch(max_threads=concurrency)