Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer | |
from string import punctuation | |
import re | |
from parler_tts import ParlerTTSForConditionalGeneration | |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed | |
# Device setup | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# SmolLM Instruct setup | |
checkpoint = "HuggingFaceTB/SmolLM-360M-Instruct" | |
smol_tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
smol_model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16) | |
# Original model setup | |
repo_id = "ylacombe/p-m-e" | |
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device) | |
text_tokenizer = AutoTokenizer.from_pretrained(repo_id) | |
description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") | |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) | |
SAMPLE_RATE = feature_extractor.sampling_rate | |
SEED = 42 | |
default_text = "La voix humaine est un instrument de musique au-dessus de tous les autres." | |
default_description = "a woman with a slightly low-pitched voice speaks slowly in a clear and close-sounding environment, but her delivery is quite monotone." | |
examples = [ | |
[ | |
"La voix humaine est un instrument de musique au-dessus de tous les autres.", | |
"a woman with a slightly low-pitched voice speaks slowly in a clear and close-sounding environment, but her delivery is quite monotone.", | |
True, | |
None, | |
], | |
[ | |
"The human voice is nature's most perfect instrument.", | |
"A woman with a slightly low-pitched voice speaks slowly in a very distant-sounding environment with a clean audio quality, delivering her message in a very monotone manner.", | |
True, | |
None, | |
], | |
] | |
number_normalizer = EnglishNumberNormalizer() | |
def format_description(raw_description, do_format=True): | |
if not do_format: | |
return raw_description | |
messages = [{ | |
"role": "system", | |
"content": "You are a helpful assistant that formats voice descriptions precisely according to the template provided." | |
}, { | |
"role": "user", | |
"content": f"""Format this voice description exactly as: | |
"a [gender] with a [pitch] voice speaks [speed] in a [environment], [delivery style]" | |
Required format: | |
- gender: man/woman | |
- pitch: slightly low-pitched/moderate pitch/high-pitched | |
- speed: slowly/moderately/quickly | |
- environment: close-sounding and clear/distant-sounding and noisy | |
- delivery style: with monotone delivery/with animated delivery | |
Input description: {raw_description} | |
Return only the formatted description, nothing else.""" | |
}] | |
input_text = smol_tokenizer.apply_chat_template(messages, tokenize=False) | |
inputs = smol_tokenizer.encode(input_text, return_tensors="pt").to(device) | |
outputs = smol_model.generate( | |
inputs, | |
max_new_tokens=100, | |
temperature=0.2, | |
top_p=0.9, | |
do_sample=True | |
) | |
formatted = smol_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract just the formatted description | |
if "a woman" in formatted.lower() or "a man" in formatted.lower(): | |
return formatted.strip() | |
return raw_description | |
def preprocess(text): | |
text = number_normalizer(text).strip() | |
text = text.replace("-", " ") | |
if text[-1] not in punctuation: | |
text = f"{text}." | |
abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b' | |
def separate_abb(chunk): | |
chunk = chunk.replace(".","") | |
return " ".join(chunk) | |
abbreviations = re.findall(abbreviations_pattern, text) | |
for abv in abbreviations: | |
if abv in text: | |
text = text.replace(abv, separate_abb(abv)) | |
return text | |
def gen_tts(text, description, do_format=True): | |
formatted_desc = format_description(description, do_format) | |
inputs = description_tokenizer(formatted_desc.strip(), return_tensors="pt").to(device) | |
prompt = text_tokenizer(preprocess(text), return_tensors="pt").to(device) | |
set_seed(SEED) | |
generation = model.generate( | |
input_ids=inputs.input_ids, | |
prompt_input_ids=prompt.input_ids, | |
attention_mask=inputs.attention_mask, | |
prompt_attention_mask=prompt.attention_mask, | |
do_sample=True, | |
temperature=1.0 | |
) | |
audio_arr = generation.cpu().numpy().squeeze() | |
return formatted_desc, (SAMPLE_RATE, audio_arr) | |
# Rest of the code remains unchanged | |
css = """ | |
#share-btn-container { | |
display: flex; | |
padding-left: 0.5rem !important; | |
padding-right: 0.5rem !important; | |
background-color: #000000; | |
justify-content: center; | |
align-items: center; | |
border-radius: 9999px !important; | |
width: 13rem; | |
margin-top: 10px; | |
margin-left: auto; | |
flex: unset !important; | |
} | |
#share-btn { | |
all: initial; | |
color: #ffffff; | |
font-weight: 600; | |
cursor: pointer; | |
font-family: 'IBM Plex Sans', sans-serif; | |
margin-left: 0.5rem !important; | |
padding-top: 0.25rem !important; | |
padding-bottom: 0.25rem !important; | |
right:0; | |
} | |
#share-btn * { | |
all: unset !important; | |
} | |
#share-btn-container div:nth-child(-n+2){ | |
width: auto !important; | |
min-height: 0px !important; | |
} | |
#share-btn-container .wrap { | |
display: none !important; | |
} | |
""" | |
with gr.Blocks(css=css) as block: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;"> | |
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> | |
Multi Parler-TTS 🗣️ | |
</h1> | |
</div> | |
</div> | |
""" | |
) | |
gr.HTML( | |
"""<p><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> is a training and inference library for | |
high-fidelity text-to-speech (TTS) models.</p> | |
<p>This multilingual model supports French, Spanish, Italian, Portuguese, Polish, German, Dutch, and English. It generates high-quality speech with features that can be controlled using a simple text prompt.</p> | |
<p>By default, Parler-TTS generates 🎲 random voice characteristics. To ensure 🎯 <b>speaker consistency</b> across generations, try to use consistent descriptions in your prompts.</p>""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox( | |
label="Input Text", | |
lines=2, | |
value=default_text | |
) | |
raw_description = gr.Textbox( | |
label="Voice Description", | |
lines=2, | |
value=default_description | |
) | |
do_format = gr.Checkbox( | |
label="Reformat description using SmolLM", | |
value=True | |
) | |
formatted_description = gr.Textbox( | |
label="Used Description", | |
lines=2 | |
) | |
generate_button = gr.Button("Generate Audio", variant="primary") | |
with gr.Column(): | |
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy") | |
generate_button.click( | |
fn=gen_tts, | |
inputs=[input_text, raw_description, do_format], | |
outputs=[formatted_description, audio_out] | |
) | |
gr.Examples( | |
examples=examples, | |
fn=gen_tts, | |
inputs=[input_text, raw_description, do_format], | |
outputs=[formatted_description, audio_out], | |
cache_examples=True | |
) | |
gr.HTML( | |
"""<p>Tips for ensuring good generation: | |
<ul> | |
<li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li> | |
<li>Punctuation can be used to control the prosody of the generations</li> | |
<li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li> | |
</ul> | |
</p>""" | |
) | |
block.queue() | |
block.launch(share=True) |