File size: 25,493 Bytes
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd841c
ac0890f
 
ef5f302
9fd841c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593294b
ac0890f
9fd841c
 
593294b
ac0890f
9fd841c
 
593294b
02ed689
 
 
e8fbf78
9fd841c
 
ff715ca
 
 
 
 
 
 
 
 
 
9fd841c
ff715ca
 
 
 
 
 
 
 
 
 
9fd841c
ff715ca
 
 
 
 
 
9fd841c
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
9fd841c
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5f302
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd841c
ff715ca
 
 
 
 
 
9fd841c
 
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
9fd841c
ff715ca
 
9fd841c
 
ff715ca
 
 
 
 
 
 
ef5f302
ff715ca
 
 
 
 
 
ef5f302
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd841c
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd841c
 
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd841c
 
ef5f302
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5f302
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5f302
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5f302
ff715ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef5f302
ff715ca
 
ef5f302
ff715ca
 
ef5f302
ff715ca
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = "6"

# uncomment the next line to use huggingface model in China
# os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'

import cv2
import io
import gc
import yaml
import argparse
import torch
import torchvision
import diffusers
from diffusers import StableDiffusionPipeline, AutoencoderKL, DDPMScheduler, ControlNetModel
import gradio as gr
from enum import Enum
import imageio.v2 as imageio

from src.utils import *
from src.keyframe_selection import get_keyframe_ind
from src.diffusion_hacked import apply_FRESCO_attn, apply_FRESCO_opt, disable_FRESCO_opt
from src.diffusion_hacked import get_flow_and_interframe_paras, get_intraframe_paras
from src.pipe_FRESCO import inference
from src.free_lunch_utils import apply_freeu

import sys
sys.path.append("./src/ebsynth/deps/gmflow/")
sys.path.append("./src/EGNet/")
sys.path.append("./src/ControlNet/")

from gmflow.gmflow import GMFlow
from model import build_model
from annotator.hed import HEDdetector
from annotator.canny import CannyDetector
from annotator.midas import MidasDetector

import huggingface_hub
import shutil
import os
import spaces

huggingface_hub.hf_hub_download('SingleZombie/FRESCO',
                                'boxer-punching-towards-camera.mp4',
                                local_dir='data')
huggingface_hub.hf_hub_download('SingleZombie/FRESCO',
                                'car-turn.mp4',
                                local_dir='data')
huggingface_hub.hf_hub_download('SingleZombie/FRESCO',
                                'dog.mp4',
                                local_dir='data')
huggingface_hub.hf_hub_download('SingleZombie/FRESCO',
                                'music.mp4',
                                local_dir='data')

huggingface_hub.hf_hub_download('PKUWilliamYang/Rerender',
                                'models/gmflow_sintel-0c07dcb3.pth',
                                local_dir='./')

huggingface_hub.hf_hub_download('PKUWilliamYang/Rerender',
                                'models/epoch_resnet.pth',
                                local_dir='./')

huggingface_hub.hf_hub_download('PKUWilliamYang/Rerender',
                                'models/ebsynth',
                                local_dir='./')
                                
os.symlink('models', 'model')
os.symlink(os.path.abspath(os.readlink('models/ebsynth')), 'src/ebsynth/deps/ebsynth/bin/ebsynth')

device = 'cuda' if torch.cuda.is_available() else 'cpu'

def get_models(config):
    # optical flow
    flow_model = GMFlow(feature_channels=128,
                        num_scales=1,
                        upsample_factor=8,
                        num_head=1,
                        attention_type='swin',
                        ffn_dim_expansion=4,
                        num_transformer_layers=6,
                        ).to(device)

    checkpoint = torch.load(
        config['gmflow_path'], map_location=lambda storage, loc: storage)
    weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
    flow_model.load_state_dict(weights, strict=False)
    flow_model.eval()

    # saliency detection
    sod_model = build_model('resnet')
    sod_model.load_state_dict(torch.load(config['sod_path']))
    sod_model.to(device).eval()

    # controlnet
    if config['controlnet_type'] not in ['hed', 'depth', 'canny']:
        config['controlnet_type'] = 'hed'
    controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-"+config['controlnet_type'],
                                                 torch_dtype=torch.float16)
    controlnet.to(device)
    if config['controlnet_type'] == 'depth':
        detector = MidasDetector()
    elif config['controlnet_type'] == 'canny':
        detector = CannyDetector()
    else:
        detector = HEDdetector()

    # diffusion model
    vae = AutoencoderKL.from_pretrained(
        "stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
    pipe = StableDiffusionPipeline.from_pretrained(
        config['sd_path'], vae=vae, torch_dtype=torch.float16)
    pipe.scheduler = DDPMScheduler.from_config(pipe.scheduler.config)
    pipe.to(device)
    pipe.scheduler.set_timesteps(
        config['num_inference_steps'], device=pipe._execution_device)

    frescoProc = apply_FRESCO_attn(pipe)
    frescoProc.controller.disable_controller()
    apply_FRESCO_opt(pipe)

    for param in flow_model.parameters():
        param.requires_grad = False
    for param in sod_model.parameters():
        param.requires_grad = False
    for param in controlnet.parameters():
        param.requires_grad = False
    for param in pipe.unet.parameters():
        param.requires_grad = False

    return pipe, frescoProc, controlnet, detector, flow_model, sod_model


def apply_control(x, detector, control_type):
    if control_type == 'depth':
        detected_map, _ = detector(x)
    elif control_type == 'canny':
        detected_map = detector(x, 50, 100)
    else:
        detected_map = detector(x)
    return detected_map


class ProcessingState(Enum):
    NULL = 0
    KEY_IMGS = 1


def cfg_to_input(filename):

    with open(filename, "r") as f:
        cfg = yaml.safe_load(f)
    use_constraints = [
        'spatial-guided attention',
        'cross-frame attention',
        'temporal-guided attention',
        'spatial-guided optimization',
        'temporal-guided optimization',
    ]

    if 'realistic' in cfg['sd_path'].lower():
        a_prompt = 'RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3'
        n_prompt = '(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation'
    else:
        a_prompt = 'best quality, extremely detailed'
        n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

    frame_count = get_frame_count(cfg['file_path'])
    args = [
        cfg['file_path'], cfg['prompt'], cfg['sd_path'], cfg['seed'], 512, cfg['cond_scale'],
        1.0, cfg['controlnet_type'], 50, 100,
        cfg['num_inference_steps'], 7.5, a_prompt, n_prompt,
        frame_count, cfg['batch_size'], cfg['mininterv'], cfg['maxinterv'],
        use_constraints, True,
        1, 1, 1, 1
    ]
    return args


class GlobalState:
    def __init__(self):
        config_path = 'config/config_dog.yaml'
        with open(config_path, "r") as f:
            config = yaml.safe_load(f)

        self.sd_model = config['sd_path']
        self.control_type = config['controlnet_type']
        self.processing_state = ProcessingState.NULL
        pipe, frescoProc, controlnet, detector, flow_model, sod_model = get_models(
            config)
        self.pipe = pipe
        self.frescoProc = frescoProc
        self.controlnet = controlnet
        self.detector = detector
        self.flow_model = flow_model
        self.sod_model = sod_model
        self.keys = []

    def update_controlnet_model(self, control_type):
        if self.control_type == control_type:
            return
        self.control_type = control_type
        self.controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-"+control_type,
                                                          torch_dtype=torch.float16)
        self.controlnet.to(device)
        if control_type == 'depth':
            self.detector = MidasDetector()
        elif control_type == 'canny':
            self.detector = CannyDetector()
        else:
            self.detector = HEDdetector()
        if device == 'cuda':
            torch.cuda.empty_cache()
        for param in self.controlnet.parameters():
            param.requires_grad = False

    def update_sd_model(self, sd_model):
        if self.sd_model == sd_model:
            return
        self.sd_model = sd_model
        vae = AutoencoderKL.from_pretrained(
            "stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
        self.pipe = StableDiffusionPipeline.from_pretrained(
            sd_model, vae=vae, torch_dtype=torch.float16)
        self.pipe.scheduler = DDPMScheduler.from_config(
            self.pipe.scheduler.config)
        self.pipe.to(device)
        self.frescoProc = apply_FRESCO_attn(self.pipe)
        self.frescoProc.controller.disable_controller()
        if device == 'cuda':
            torch.cuda.empty_cache()
        for param in self.pipe.unet.parameters():
            param.requires_grad = False




@torch.no_grad()
@spaces.GPU(duration=240)
def process1(input_path, prompt, sd_model, seed, image_resolution, control_strength,
             x0_strength, control_type, low_threshold, high_threshold,
             ddpm_steps, scale, a_prompt, n_prompt,
             frame_count, batch_size, mininterv, maxinterv,
             use_constraints, bg_smooth, use_poisson, max_process,
             b1, b2, s1, s2):
    global_state = GlobalState()
    global_state.update_controlnet_model(control_type)
    global_state.update_sd_model(sd_model)
    apply_freeu(global_state.pipe, b1=b1, b2=b2, s1=s1, s2=s2)

    filename = os.path.splitext(os.path.basename(input_path))[0]
    save_path = os.path.join('output', filename)
    device = global_state.pipe._execution_device
    guidance_scale = scale
    do_classifier_free_guidance = True
    global_state.pipe.scheduler.set_timesteps(ddpm_steps, device=device)
    timesteps = global_state.pipe.scheduler.timesteps
    cond_scale = [control_strength] * ddpm_steps
    dilate = Dilate(device=device)

    base_prompt = prompt
    video_cap = cv2.VideoCapture(input_path)
    frame_num = min(frame_count, int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT)))
    fps = int(video_cap.get(cv2.CAP_PROP_FPS))

    if mininterv > maxinterv:
        mininterv = maxinterv

    keys = get_keyframe_ind(input_path, frame_num, mininterv, maxinterv)
    if len(keys) < 3:
        raise gr.Error('Too few (%d) keyframes detected!' % (len(keys)))
    global_state.keys = keys
    fps = max(int(fps * len(keys) / frame_num), 1)
    os.makedirs(save_path, exist_ok=True)
    os.makedirs(os.path.join(save_path, 'keys'), exist_ok=True)
    os.makedirs(os.path.join(save_path, 'video'), exist_ok=True)

    sublists = [keys[i:i+batch_size-2]
                for i in range(2, len(keys), batch_size-2)]
    sublists[0].insert(0, keys[0])
    sublists[0].insert(1, keys[1])
    if len(sublists) > 1 and len(sublists[-1]) < 3:
        add_num = 3 - len(sublists[-1])
        sublists[-1] = sublists[-2][-add_num:] + sublists[-1]
        sublists[-2] = sublists[-2][:-add_num]

    batch_ind = 0
    propagation_mode = batch_ind > 0
    imgs = []
    record_latents = []
    video_cap = cv2.VideoCapture(input_path)

    for i in range(frame_num):
        success, frame = video_cap.read()
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        img = resize_image(frame, image_resolution)
        H, W, C = img.shape
        Image.fromarray(img).save(os.path.join(
            save_path, 'video/%04d.png' % (i)))
        if i not in sublists[batch_ind]:
            continue

        imgs += [img]
        if i != sublists[batch_ind][-1]:
            continue

        # prepare input
        batch_size = len(imgs)
        n_prompts = [n_prompt] * len(imgs)
        prompts = [base_prompt + a_prompt] * len(sublists[batch_ind])
        if propagation_mode:
            prompts = ref_prompt + prompts

        prompt_embeds = global_state.pipe._encode_prompt(
            prompts,
            device,
            1,
            do_classifier_free_guidance,
            n_prompts,
        )

        imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0)

        edges = torch.cat([numpy2tensor(apply_control(img,
                                                      global_state.detector, control_type)[:, :, None]) for img in imgs], dim=0)
        edges = edges.repeat(1, 3, 1, 1).to(device) * 0.5 + 0.5
        edges = torch.cat([edges.to(global_state.pipe.unet.dtype)] * 2)

        if bg_smooth:
            saliency = get_saliency(imgs, global_state.sod_model, dilate)
        else:
            saliency = None

        # prepare parameters for inter-frame and intra-frame consistency
        flows, occs, attn_mask, interattn_paras = get_flow_and_interframe_paras(
            global_state.flow_model, imgs)
        correlation_matrix = get_intraframe_paras(global_state.pipe, imgs_torch, global_state.frescoProc,
                                                  prompt_embeds, seed=seed)

        global_state.frescoProc.controller.disable_controller()
        if 'spatial-guided attention' in use_constraints:
            global_state.frescoProc.controller.enable_intraattn()
        if 'temporal-guided attention' in use_constraints:
            global_state.frescoProc.controller.enable_interattn(
                interattn_paras)
        if 'cross-frame attention' in use_constraints:
            global_state.frescoProc.controller.enable_cfattn(attn_mask)

        global_state.frescoProc.controller.enable_controller(
            interattn_paras=interattn_paras, attn_mask=attn_mask)
        optimize_temporal = True
        if 'temporal-guided optimization' not in use_constraints:
            correlation_matrix = []
        if 'spatial-guided optimization' not in use_constraints:
            optimize_temporal = False
        apply_FRESCO_opt(global_state.pipe, steps=timesteps[:int(ddpm_steps*0.75)],
                         flows=flows, occs=occs, correlation_matrix=correlation_matrix,
                         saliency=saliency, optimize_temporal=optimize_temporal)

        gc.collect()
        if device == 'cuda':
            torch.cuda.empty_cache()

        # run!
        latents = inference(global_state.pipe, global_state.controlnet, global_state.frescoProc,
                            imgs_torch, prompt_embeds, edges, timesteps,
                            cond_scale, ddpm_steps, int(
                                ddpm_steps*(1-x0_strength)),
                            True, seed, guidance_scale, True,
                            record_latents, propagation_mode,
                            flows=flows, occs=occs, saliency=saliency, repeat_noise=True)

        with torch.no_grad():
            image = global_state.pipe.vae.decode(
                latents / global_state.pipe.vae.config.scaling_factor, return_dict=False)[0]
            image = torch.clamp(image, -1, 1)
            save_imgs = tensor2numpy(image)
            bias = 2 if propagation_mode else 0
            for ind, num in enumerate(sublists[batch_ind]):
                Image.fromarray(
                    save_imgs[ind+bias]).save(os.path.join(save_path, 'keys/%04d.png' % (num)))

        batch_ind += 1
        # current batch uses the last frame of the previous batch as ref
        ref_prompt = [prompts[0], prompts[-1]]
        imgs = [imgs[0], imgs[-1]]
        propagation_mode = batch_ind > 0
        if batch_ind == len(sublists):
            gc.collect()
            if device == 'cuda':
                torch.cuda.empty_cache()
            break  

    writer = imageio.get_writer(os.path.join(save_path, 'key.mp4'), fps=fps)
    file_list = sorted(os.listdir(os.path.join(save_path, 'keys')))
    for file_name in file_list:
        if not (file_name.endswith('jpg') or file_name.endswith('png')):
            continue
        fn = os.path.join(os.path.join(save_path, 'keys'), file_name)
        curImg = imageio.imread(fn)
        writer.append_data(curImg)
    writer.close()

    return os.path.join(save_path, 'key.mp4')


config_dir = 'config'
filenames = os.listdir(config_dir)
config_list = []
for filename in filenames:
    if filename.endswith('yaml'):
        config_list.append(f'{config_dir}/{filename}')

block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown('## FRESCO Video-to-Video Translation')
    with gr.Row():
        with gr.Column():
            input_path = gr.Video(label='Input Video',
                                  sources='upload',
                                  format='mp4',
                                  visible=True)
            prompt = gr.Textbox(label='Prompt')
            sd_model = gr.Dropdown(['SG161222/Realistic_Vision_V2.0',
                                    'runwayml/stable-diffusion-v1-5',
                                    'stablediffusionapi/rev-animated',
                                    'stablediffusionapi/flat-2d-animerge'],
                                   label='Base model',
                                   value='SG161222/Realistic_Vision_V2.0')
            seed = gr.Slider(label='Seed',
                             minimum=0,
                             maximum=2147483647,
                             step=1,
                             value=0,
                             randomize=True)
            run_button1 = gr.Button(value='Run Key Frames')
            with gr.Accordion('Advanced options for single frame processing',
                              open=False):
                image_resolution = gr.Slider(label='Frame resolution',
                                             minimum=256,
                                             maximum=512,
                                             value=512,
                                             step=64)
                control_strength = gr.Slider(label='ControlNet strength',
                                             minimum=0.0,
                                             maximum=2.0,
                                             value=1.0,
                                             step=0.01)
                x0_strength = gr.Slider(
                    label='Denoising strength',
                    minimum=0.00,
                    maximum=1.05,
                    value=0.75,
                    step=0.05,
                    info=('0: fully recover the input.'
                          '1.05: fully redraw the input.'))
                with gr.Row():
                    control_type = gr.Dropdown(['hed', 'canny', 'depth'],
                                               label='Control type',
                                               value='hed')
                    low_threshold = gr.Slider(label='Canny low threshold',
                                              minimum=1,
                                              maximum=255,
                                              value=50,
                                              step=1)
                    high_threshold = gr.Slider(label='Canny high threshold',
                                               minimum=1,
                                               maximum=255,
                                               value=100,
                                               step=1)
                ddpm_steps = gr.Slider(label='Steps',
                                       minimum=20,
                                       maximum=100,
                                       value=20,
                                       step=20)
                scale = gr.Slider(label='CFG scale',
                                  minimum=1.1,
                                  maximum=30.0,
                                  value=7.5,
                                  step=0.1)
                a_prompt = gr.Textbox(label='Added prompt',
                                      value='best quality, extremely detailed')
                n_prompt = gr.Textbox(
                    label='Negative prompt',
                    value=('longbody, lowres, bad anatomy, bad hands, '
                           'missing fingers, extra digit, fewer digits, '
                           'cropped, worst quality, low quality'))
                with gr.Row():
                    b1 = gr.Slider(label='FreeU first-stage backbone factor',
                                   minimum=1,
                                   maximum=1.6,
                                   value=1,
                                   step=0.01,
                                   info='FreeU to enhance texture and color')
                    b2 = gr.Slider(label='FreeU second-stage backbone factor',
                                   minimum=1,
                                   maximum=1.6,
                                   value=1,
                                   step=0.01)
                with gr.Row():
                    s1 = gr.Slider(label='FreeU first-stage skip factor',
                                   minimum=0,
                                   maximum=1,
                                   value=1,
                                   step=0.01)
                    s2 = gr.Slider(label='FreeU second-stage skip factor',
                                   minimum=0,
                                   maximum=1,
                                   value=1,
                                   step=0.01)
            with gr.Accordion('Advanced options for FRESCO constraints',
                              open=False):
                frame_count = gr.Slider(
                    label='Number of frames',
                    minimum=8,
                    maximum=300,
                    value=100,
                    step=1)
                batch_size = gr.Slider(
                    label='Number of frames in a batch',
                    minimum=3,
                    maximum=8,
                    value=8,
                    step=1)
                mininterv = gr.Slider(label='Min keyframe interval',
                                      minimum=1,
                                      maximum=20,
                                      value=5,
                                      step=1)
                maxinterv = gr.Slider(label='Max keyframe interval',
                                      minimum=1,
                                      maximum=50,
                                      value=20,
                                      step=1)
                use_constraints = gr.CheckboxGroup(
                    [
                        'spatial-guided attention',
                        'cross-frame attention',
                        'temporal-guided attention',
                        'spatial-guided optimization',
                        'temporal-guided optimization',
                    ],
                    label='Select the FRESCO contraints to be used',
                    value=[
                        'spatial-guided attention',
                        'cross-frame attention',
                        'temporal-guided attention',
                        'spatial-guided optimization',
                        'temporal-guided optimization',
                    ]),
                bg_smooth = gr.Checkbox(
                    label='Background smoothing',
                    value=True,
                    info='Select to smooth background')

            with gr.Accordion('Example configs', open=True):

                example_list = [cfg_to_input(x) for x in config_list]

                ips = [
                    input_path, prompt, sd_model, seed, image_resolution, control_strength,
                    x0_strength, control_type, low_threshold, high_threshold,
                    ddpm_steps, scale, a_prompt, n_prompt,
                    frame_count, batch_size, mininterv, maxinterv,
                    use_constraints[0], bg_smooth,
                    b1, b2, s1, s2
                ]

                gr.Examples(
                    examples=example_list,
                    inputs=[*ips],
                )

        with gr.Column():
            result_keyframe = gr.Video(label='Output key frame video',
                                       format='mp4',
                                       interactive=False)

    def input_changed(path):
        if path is None:
            return (gr.Slider.update(), gr.Slider.update(), gr.Slider.update())
        frame_count = get_frame_count(path)
        if frame_count == 0:
            return (gr.Slider.update(), gr.Slider.update(), gr.Slider.update())
        if frame_count <= 8:
            raise gr.Error('The input video is too short!'
                           'Please input another video.')
        min_interv_l = 1
        max_interv_l = 1
        min_interv_c = min(5, frame_count)
        max_interv_c = min(20, frame_count)
        min_interv_r = frame_count
        max_interv_r = frame_count
        return (gr.Slider.change(minimum=min_interv_l,
                                 value=min_interv_c,
                                 maximum=min_interv_r),
                gr.Slider.change(minimum=max_interv_l,
                                 value=max_interv_c,
                                 maximum=max_interv_r),
                gr.Slider.change(minimum=8,
                                 value=frame_count,
                                 maximum=frame_count),
                )

    input_path.change(input_changed, input_path, [
                      mininterv, maxinterv, frame_count])
    input_path.upload(input_changed, input_path, [
                      mininterv, maxinterv, frame_count])

    run_button1.click(fn=process1, inputs=ips, outputs=[result_keyframe])

block.launch()