Spaces:
Build error
Build error
#!/usr/bin/env python3 | |
# -*- coding:utf-8 -*- | |
import os | |
import time | |
from copy import deepcopy | |
import os.path as osp | |
from tqdm import tqdm | |
import numpy as np | |
import torch | |
from torch.cuda import amp | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.utils.tensorboard import SummaryWriter | |
import tools.eval as eval | |
from yolov6.data.data_load import create_dataloader | |
from yolov6.models.yolo import build_model | |
from yolov6.models.loss import ComputeLoss | |
from yolov6.utils.events import LOGGER, NCOLS, load_yaml, write_tblog | |
from yolov6.utils.ema import ModelEMA, de_parallel | |
from yolov6.utils.checkpoint import load_state_dict, save_checkpoint, strip_optimizer | |
from yolov6.solver.build import build_optimizer, build_lr_scheduler | |
class Trainer: | |
def __init__(self, args, cfg, device): | |
self.args = args | |
self.cfg = cfg | |
self.device = device | |
if args.resume: | |
self.ckpt = torch.load(args.resume, map_location='cpu') | |
self.rank = args.rank | |
self.local_rank = args.local_rank | |
self.world_size = args.world_size | |
self.main_process = self.rank in [-1, 0] | |
self.save_dir = args.save_dir | |
# get data loader | |
self.data_dict = load_yaml(args.data_path) | |
self.num_classes = self.data_dict['nc'] | |
self.train_loader, self.val_loader = self.get_data_loader(args, cfg, self.data_dict) | |
# get model and optimizer | |
model = self.get_model(args, cfg, self.num_classes, device) | |
self.optimizer = self.get_optimizer(args, cfg, model) | |
self.scheduler, self.lf = self.get_lr_scheduler(args, cfg, self.optimizer) | |
self.ema = ModelEMA(model) if self.main_process else None | |
# tensorboard | |
self.tblogger = SummaryWriter(self.save_dir) if self.main_process else None | |
self.start_epoch = 0 | |
#resume | |
if hasattr(self, "ckpt"): | |
resume_state_dict = self.ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 | |
model.load_state_dict(resume_state_dict, strict=True) # load | |
self.start_epoch = self.ckpt['epoch'] + 1 | |
self.optimizer.load_state_dict(self.ckpt['optimizer']) | |
if self.main_process: | |
self.ema.ema.load_state_dict(self.ckpt['ema'].float().state_dict()) | |
self.ema.updates = self.ckpt['updates'] | |
self.model = self.parallel_model(args, model, device) | |
self.model.nc, self.model.names = self.data_dict['nc'], self.data_dict['names'] | |
self.max_epoch = args.epochs | |
self.max_stepnum = len(self.train_loader) | |
self.batch_size = args.batch_size | |
self.img_size = args.img_size | |
# Training Process | |
def train(self): | |
try: | |
self.train_before_loop() | |
for self.epoch in range(self.start_epoch, self.max_epoch): | |
self.train_in_loop() | |
except Exception as _: | |
LOGGER.error('ERROR in training loop or eval/save model.') | |
raise | |
finally: | |
self.train_after_loop() | |
# Training loop for each epoch | |
def train_in_loop(self): | |
try: | |
self.prepare_for_steps() | |
for self.step, self.batch_data in self.pbar: | |
self.train_in_steps() | |
self.print_details() | |
except Exception as _: | |
LOGGER.error('ERROR in training steps.') | |
raise | |
try: | |
self.eval_and_save() | |
except Exception as _: | |
LOGGER.error('ERROR in evaluate and save model.') | |
raise | |
# Training loop for batchdata | |
def train_in_steps(self): | |
images, targets = self.prepro_data(self.batch_data, self.device) | |
# forward | |
with amp.autocast(enabled=self.device != 'cpu'): | |
preds = self.model(images) | |
total_loss, loss_items = self.compute_loss(preds, targets) | |
if self.rank != -1: | |
total_loss *= self.world_size | |
# backward | |
self.scaler.scale(total_loss).backward() | |
self.loss_items = loss_items | |
self.update_optimizer() | |
def eval_and_save(self): | |
remaining_epochs = self.max_epoch - self.epoch | |
eval_interval = self.args.eval_interval if remaining_epochs > self.args.heavy_eval_range else 1 | |
is_val_epoch = (not self.args.eval_final_only or (remaining_epochs == 1)) and (self.epoch % eval_interval == 0) | |
if self.main_process: | |
self.ema.update_attr(self.model, include=['nc', 'names', 'stride']) # update attributes for ema model | |
if is_val_epoch: | |
self.eval_model() | |
self.ap = self.evaluate_results[0] * 0.1 + self.evaluate_results[1] * 0.9 | |
self.best_ap = max(self.ap, self.best_ap) | |
# save ckpt | |
ckpt = { | |
'model': deepcopy(de_parallel(self.model)).half(), | |
'ema': deepcopy(self.ema.ema).half(), | |
'updates': self.ema.updates, | |
'optimizer': self.optimizer.state_dict(), | |
'epoch': self.epoch, | |
} | |
save_ckpt_dir = osp.join(self.save_dir, 'weights') | |
save_checkpoint(ckpt, (is_val_epoch) and (self.ap == self.best_ap), save_ckpt_dir, model_name='last_ckpt') | |
del ckpt | |
# log for tensorboard | |
write_tblog(self.tblogger, self.epoch, self.evaluate_results, self.mean_loss) | |
def eval_model(self): | |
results = eval.run(self.data_dict, | |
batch_size=self.batch_size // self.world_size * 2, | |
img_size=self.img_size, | |
model=self.ema.ema, | |
dataloader=self.val_loader, | |
save_dir=self.save_dir, | |
task='train') | |
LOGGER.info(f"Epoch: {self.epoch} | mAP@0.5: {results[0]} | mAP@0.50:0.95: {results[1]}") | |
self.evaluate_results = results[:2] | |
def train_before_loop(self): | |
LOGGER.info('Training start...') | |
self.start_time = time.time() | |
self.warmup_stepnum = max(round(self.cfg.solver.warmup_epochs * self.max_stepnum), 1000) | |
self.scheduler.last_epoch = self.start_epoch - 1 | |
self.last_opt_step = -1 | |
self.scaler = amp.GradScaler(enabled=self.device != 'cpu') | |
self.best_ap, self.ap = 0.0, 0.0 | |
self.evaluate_results = (0, 0) # AP50, AP50_95 | |
self.compute_loss = ComputeLoss(iou_type=self.cfg.model.head.iou_type) | |
def prepare_for_steps(self): | |
if self.epoch > self.start_epoch: | |
self.scheduler.step() | |
self.model.train() | |
if self.rank != -1: | |
self.train_loader.sampler.set_epoch(self.epoch) | |
self.mean_loss = torch.zeros(4, device=self.device) | |
self.optimizer.zero_grad() | |
LOGGER.info(('\n' + '%10s' * 5) % ('Epoch', 'iou_loss', 'l1_loss', 'obj_loss', 'cls_loss')) | |
self.pbar = enumerate(self.train_loader) | |
if self.main_process: | |
self.pbar = tqdm(self.pbar, total=self.max_stepnum, ncols=NCOLS, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') | |
# Print loss after each steps | |
def print_details(self): | |
if self.main_process: | |
self.mean_loss = (self.mean_loss * self.step + self.loss_items) / (self.step + 1) | |
self.pbar.set_description(('%10s' + '%10.4g' * 4) % (f'{self.epoch}/{self.max_epoch - 1}', \ | |
*(self.mean_loss))) | |
# Empty cache if training finished | |
def train_after_loop(self): | |
if self.main_process: | |
LOGGER.info(f'\nTraining completed in {(time.time() - self.start_time) / 3600:.3f} hours.') | |
save_ckpt_dir = osp.join(self.save_dir, 'weights') | |
strip_optimizer(save_ckpt_dir, self.epoch) # strip optimizers for saved pt model | |
if self.device != 'cpu': | |
torch.cuda.empty_cache() | |
def update_optimizer(self): | |
curr_step = self.step + self.max_stepnum * self.epoch | |
self.accumulate = max(1, round(64 / self.batch_size)) | |
if curr_step <= self.warmup_stepnum: | |
self.accumulate = max(1, np.interp(curr_step, [0, self.warmup_stepnum], [1, 64 / self.batch_size]).round()) | |
for k, param in enumerate(self.optimizer.param_groups): | |
warmup_bias_lr = self.cfg.solver.warmup_bias_lr if k == 2 else 0.0 | |
param['lr'] = np.interp(curr_step, [0, self.warmup_stepnum], [warmup_bias_lr, param['initial_lr'] * self.lf(self.epoch)]) | |
if 'momentum' in param: | |
param['momentum'] = np.interp(curr_step, [0, self.warmup_stepnum], [self.cfg.solver.warmup_momentum, self.cfg.solver.momentum]) | |
if curr_step - self.last_opt_step >= self.accumulate: | |
self.scaler.step(self.optimizer) | |
self.scaler.update() | |
self.optimizer.zero_grad() | |
if self.ema: | |
self.ema.update(self.model) | |
self.last_opt_step = curr_step | |
def get_data_loader(args, cfg, data_dict): | |
train_path, val_path = data_dict['train'], data_dict['val'] | |
# check data | |
nc = int(data_dict['nc']) | |
class_names = data_dict['names'] | |
assert len(class_names) == nc, f'the length of class names does not match the number of classes defined' | |
grid_size = max(int(max(cfg.model.head.strides)), 32) | |
# create train dataloader | |
train_loader = create_dataloader(train_path, args.img_size, args.batch_size // args.world_size, grid_size, | |
hyp=dict(cfg.data_aug), augment=True, rect=False, rank=args.local_rank, | |
workers=args.workers, shuffle=True, check_images=args.check_images, | |
check_labels=args.check_labels, data_dict=data_dict, task='train')[0] | |
# create val dataloader | |
val_loader = None | |
if args.rank in [-1, 0]: | |
val_loader = create_dataloader(val_path, args.img_size, args.batch_size // args.world_size * 2, grid_size, | |
hyp=dict(cfg.data_aug), rect=True, rank=-1, pad=0.5, | |
workers=args.workers, check_images=args.check_images, | |
check_labels=args.check_labels, data_dict=data_dict, task='val')[0] | |
return train_loader, val_loader | |
def prepro_data(batch_data, device): | |
images = batch_data[0].to(device, non_blocking=True).float() / 255 | |
targets = batch_data[1].to(device) | |
return images, targets | |
def get_model(self, args, cfg, nc, device): | |
model = build_model(cfg, nc, device) | |
weights = cfg.model.pretrained | |
if weights: # finetune if pretrained model is set | |
LOGGER.info(f'Loading state_dict from {weights} for fine-tuning...') | |
model = load_state_dict(weights, model, map_location=device) | |
LOGGER.info('Model: {}'.format(model)) | |
return model | |
def parallel_model(args, model, device): | |
# If DP mode | |
dp_mode = device.type != 'cpu' and args.rank == -1 | |
if dp_mode and torch.cuda.device_count() > 1: | |
LOGGER.warning('WARNING: DP not recommended, use DDP instead.\n') | |
model = torch.nn.DataParallel(model) | |
# If DDP mode | |
ddp_mode = device.type != 'cpu' and args.rank != -1 | |
if ddp_mode: | |
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank) | |
return model | |
def get_optimizer(self, args, cfg, model): | |
accumulate = max(1, round(64 / args.batch_size)) | |
cfg.solver.weight_decay *= args.batch_size * accumulate / 64 | |
optimizer = build_optimizer(cfg, model) | |
return optimizer | |
def get_lr_scheduler(args, cfg, optimizer): | |
epochs = args.epochs | |
lr_scheduler, lf = build_lr_scheduler(cfg, optimizer, epochs) | |
return lr_scheduler, lf | |