Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,745 Bytes
0035f04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
"""
This file is part of ComfyUI.
Copyright (C) 2024 Stability AI
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
import torch.nn as nn
from comfy.ldm.modules.attention import optimized_attention
import comfy.ops
class OptimizedAttention(nn.Module):
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
self.heads = nhead
self.to_q = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
self.to_k = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
self.to_v = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
def forward(self, q, k, v):
q = self.to_q(q)
k = self.to_k(k)
v = self.to_v(v)
out = optimized_attention(q, k, v, self.heads)
return self.out_proj(out)
class Attention2D(nn.Module):
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
self.attn = OptimizedAttention(c, nhead, dtype=dtype, device=device, operations=operations)
# self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True, dtype=dtype, device=device)
def forward(self, x, kv, self_attn=False):
orig_shape = x.shape
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
if self_attn:
kv = torch.cat([x, kv], dim=1)
# x = self.attn(x, kv, kv, need_weights=False)[0]
x = self.attn(x, kv, kv)
x = x.permute(0, 2, 1).view(*orig_shape)
return x
def LayerNorm2d_op(operations):
class LayerNorm2d(operations.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x):
return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return LayerNorm2d
class GlobalResponseNorm(nn.Module):
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
def __init__(self, dim, dtype=None, device=None):
super().__init__()
self.gamma = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
self.beta = nn.Parameter(torch.empty(1, 1, 1, dim, dtype=dtype, device=device))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return comfy.ops.cast_to_input(self.gamma, x) * (x * Nx) + comfy.ops.cast_to_input(self.beta, x) + x
class ResBlock(nn.Module):
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, dtype=None, device=None, operations=None): # , num_heads=4, expansion=2):
super().__init__()
self.depthwise = operations.Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c, dtype=dtype, device=device)
# self.depthwise = SAMBlock(c, num_heads, expansion)
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.channelwise = nn.Sequential(
operations.Linear(c + c_skip, c * 4, dtype=dtype, device=device),
nn.GELU(),
GlobalResponseNorm(c * 4, dtype=dtype, device=device),
nn.Dropout(dropout),
operations.Linear(c * 4, c, dtype=dtype, device=device)
)
def forward(self, x, x_skip=None):
x_res = x
x = self.norm(self.depthwise(x))
if x_skip is not None:
x = torch.cat([x, x_skip], dim=1)
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x + x_res
class AttnBlock(nn.Module):
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
self.self_attn = self_attn
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.attention = Attention2D(c, nhead, dropout, dtype=dtype, device=device, operations=operations)
self.kv_mapper = nn.Sequential(
nn.SiLU(),
operations.Linear(c_cond, c, dtype=dtype, device=device)
)
def forward(self, x, kv):
kv = self.kv_mapper(kv)
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn)
return x
class FeedForwardBlock(nn.Module):
def __init__(self, c, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
self.norm = LayerNorm2d_op(operations)(c, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.channelwise = nn.Sequential(
operations.Linear(c, c * 4, dtype=dtype, device=device),
nn.GELU(),
GlobalResponseNorm(c * 4, dtype=dtype, device=device),
nn.Dropout(dropout),
operations.Linear(c * 4, c, dtype=dtype, device=device)
)
def forward(self, x):
x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
return x
class TimestepBlock(nn.Module):
def __init__(self, c, c_timestep, conds=['sca'], dtype=None, device=None, operations=None):
super().__init__()
self.mapper = operations.Linear(c_timestep, c * 2, dtype=dtype, device=device)
self.conds = conds
for cname in conds:
setattr(self, f"mapper_{cname}", operations.Linear(c_timestep, c * 2, dtype=dtype, device=device))
def forward(self, x, t):
t = t.chunk(len(self.conds) + 1, dim=1)
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
for i, c in enumerate(self.conds):
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
a, b = a + ac, b + bc
return x * (1 + a) + b
|