File size: 13,371 Bytes
0035f04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import comfy.utils
import logging

LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}


def load_lora(lora, to_load):
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

        dora_scale_name = "{}.dora_scale".format(x)
        dora_scale = None
        if dora_scale_name in lora.keys():
            dora_scale = lora[dora_scale_name]
            loaded_keys.add(dora_scale_name)

        regular_lora = "{}.lora_up.weight".format(x)
        diffusers_lora = "{}_lora.up.weight".format(x)
        diffusers2_lora = "{}.lora_B.weight".format(x)
        diffusers3_lora = "{}.lora.up.weight".format(x)
        transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
        A_name = None

        if regular_lora in lora.keys():
            A_name = regular_lora
            B_name = "{}.lora_down.weight".format(x)
            mid_name = "{}.lora_mid.weight".format(x)
        elif diffusers_lora in lora.keys():
            A_name = diffusers_lora
            B_name = "{}_lora.down.weight".format(x)
            mid_name = None
        elif diffusers2_lora in lora.keys():
            A_name = diffusers2_lora
            B_name = "{}.lora_A.weight".format(x)
            mid_name = None
        elif diffusers3_lora in lora.keys():
            A_name = diffusers3_lora
            B_name = "{}.lora.down.weight".format(x)
            mid_name = None
        elif transformers_lora in lora.keys():
            A_name = transformers_lora
            B_name ="{}.lora_linear_layer.down.weight".format(x)
            mid_name = None

        if A_name is not None:
            mid = None
            if mid_name is not None and mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale))
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)


        ######## loha
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
        if hada_w1_a_name in lora.keys():
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)


        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))

        #glora
        a1_name = "{}.a1.weight".format(x)
        a2_name = "{}.a2.weight".format(x)
        b1_name = "{}.b1.weight".format(x)
        b2_name = "{}.b2.weight".format(x)
        if a1_name in lora:
            patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
            loaded_keys.add(a1_name)
            loaded_keys.add(a2_name)
            loaded_keys.add(b1_name)
            loaded_keys.add(b2_name)

        w_norm_name = "{}.w_norm".format(x)
        b_norm_name = "{}.b_norm".format(x)
        w_norm = lora.get(w_norm_name, None)
        b_norm = lora.get(b_norm_name, None)

        if w_norm is not None:
            loaded_keys.add(w_norm_name)
            patch_dict[to_load[x]] = ("diff", (w_norm,))
            if b_norm is not None:
                loaded_keys.add(b_norm_name)
                patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,))

        diff_name = "{}.diff".format(x)
        diff_weight = lora.get(diff_name, None)
        if diff_weight is not None:
            patch_dict[to_load[x]] = ("diff", (diff_weight,))
            loaded_keys.add(diff_name)

        diff_bias_name = "{}.diff_b".format(x)
        diff_bias = lora.get(diff_bias_name, None)
        if diff_bias is not None:
            patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,))
            loaded_keys.add(diff_bias_name)

    for x in lora.keys():
        if x not in loaded_keys:
            logging.warning("lora key not loaded: {}".format(x))

    return patch_dict

def model_lora_keys_clip(model, key_map={}):
    sdk = model.state_dict().keys()

    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
    clip_l_present = False
    for b in range(32): #TODO: clean up
        for c in LORA_CLIP_MAP:
            k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                key_map[lora_key] = k

            k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                key_map[lora_key] = k
                clip_l_present = True
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                key_map[lora_key] = k

            k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                if clip_l_present:
                    lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                    key_map[lora_key] = k
                    lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                    key_map[lora_key] = k
                else:
                    lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
                    key_map[lora_key] = k
                    lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                    key_map[lora_key] = k
                    lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config
                    key_map[lora_key] = k

    for k in sdk: #OneTrainer SD3 lora
        if k.startswith("t5xxl.transformer.") and k.endswith(".weight"):
            l_key = k[len("t5xxl.transformer."):-len(".weight")]
            lora_key = "lora_te3_{}".format(l_key.replace(".", "_"))
            key_map[lora_key] = k

    k = "clip_g.transformer.text_projection.weight"
    if k in sdk:
        key_map["lora_prior_te_text_projection"] = k #cascade lora?
        # key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too
        key_map["lora_te2_text_projection"] = k #OneTrainer SD3 lora

    k = "clip_l.transformer.text_projection.weight"
    if k in sdk:
        key_map["lora_te1_text_projection"] = k #OneTrainer SD3 lora, not necessary but omits warning

    return key_map

def model_lora_keys_unet(model, key_map={}):
    sd = model.state_dict()
    sdk = sd.keys()

    for k in sdk:
        if k.startswith("diffusion_model.") and k.endswith(".weight"):
            key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = k
            key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config
            key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names

    diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
    for k in diffusers_keys:
        if k.endswith(".weight"):
            unet_key = "diffusion_model.{}".format(diffusers_keys[k])
            key_lora = k[:-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = unet_key

            diffusers_lora_prefix = ["", "unet."]
            for p in diffusers_lora_prefix:
                diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
                if diffusers_lora_key.endswith(".to_out.0"):
                    diffusers_lora_key = diffusers_lora_key[:-2]
                key_map[diffusers_lora_key] = unet_key

    if isinstance(model, comfy.model_base.SD3): #Diffusers lora SD3
        diffusers_keys = comfy.utils.mmdit_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_lora = "transformer.{}".format(k[:-len(".weight")]) #regular diffusers sd3 lora format
                key_map[key_lora] = to

                key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #format for flash-sd3 lora and others?
                key_map[key_lora] = to

                key_lora = "lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_")) #OneTrainer lora
                key_map[key_lora] = to

    if isinstance(model, comfy.model_base.AuraFlow): #Diffusers lora AuraFlow
        diffusers_keys = comfy.utils.auraflow_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_lora = "transformer.{}".format(k[:-len(".weight")]) #simpletrainer and probably regular diffusers lora format
                key_map[key_lora] = to

    if isinstance(model, comfy.model_base.HunyuanDiT):
        for k in sdk:
            if k.startswith("diffusion_model.") and k.endswith(".weight"):
                key_lora = k[len("diffusion_model."):-len(".weight")]
                key_map["base_model.model.{}".format(key_lora)] = k #official hunyuan lora format

    if isinstance(model, comfy.model_base.Flux): #Diffusers lora Flux
        diffusers_keys = comfy.utils.flux_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_lora = "transformer.{}".format(k[:-len(".weight")]) #simpletrainer and probably regular diffusers flux lora format
                key_map[key_lora] = to

    return key_map