File size: 2,759 Bytes
0035f04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
from nodes import MAX_RESOLUTION

class CLIPTextEncodeSDXLRefiner:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "ascore": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 1000.0, "step": 0.01}),
            "width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
            "height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
            "text": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", ),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

    CATEGORY = "advanced/conditioning"

    def encode(self, clip, ascore, width, height, text):
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled, "aesthetic_score": ascore, "width": width,"height": height}]], )

class CLIPTextEncodeSDXL:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
            "height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
            "crop_w": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}),
            "crop_h": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}),
            "target_width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
            "target_height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}),
            "text_g": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", ),
            "text_l": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", ),
            }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

    CATEGORY = "advanced/conditioning"

    def encode(self, clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l):
        tokens = clip.tokenize(text_g)
        tokens["l"] = clip.tokenize(text_l)["l"]
        if len(tokens["l"]) != len(tokens["g"]):
            empty = clip.tokenize("")
            while len(tokens["l"]) < len(tokens["g"]):
                tokens["l"] += empty["l"]
            while len(tokens["l"]) > len(tokens["g"]):
                tokens["g"] += empty["g"]
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]], )

NODE_CLASS_MAPPINGS = {
    "CLIPTextEncodeSDXLRefiner": CLIPTextEncodeSDXLRefiner,
    "CLIPTextEncodeSDXL": CLIPTextEncodeSDXL,
}