Qdssa's picture
Upload 269 files
0035f04 verified
"""
This file is part of ComfyUI.
Copyright (C) 2024 Stability AI
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
import torchvision
from torch import nn
from .common import LayerNorm2d_op
class CNetResBlock(nn.Module):
def __init__(self, c, dtype=None, device=None, operations=None):
super().__init__()
self.blocks = nn.Sequential(
LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
nn.GELU(),
operations.Conv2d(c, c, kernel_size=3, padding=1),
LayerNorm2d_op(operations)(c, dtype=dtype, device=device),
nn.GELU(),
operations.Conv2d(c, c, kernel_size=3, padding=1),
)
def forward(self, x):
return x + self.blocks(x)
class ControlNet(nn.Module):
def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None, dtype=None, device=None, operations=nn):
super().__init__()
if bottleneck_mode is None:
bottleneck_mode = 'effnet'
self.proj_blocks = proj_blocks
if bottleneck_mode == 'effnet':
embd_channels = 1280
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
if c_in != 3:
in_weights = self.backbone[0][0].weight.data
self.backbone[0][0] = operations.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False, dtype=dtype, device=device)
if c_in > 3:
# nn.init.constant_(self.backbone[0][0].weight, 0)
self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone()
else:
self.backbone[0][0].weight.data = in_weights[:, :c_in].clone()
elif bottleneck_mode == 'simple':
embd_channels = c_in
self.backbone = nn.Sequential(
operations.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1, dtype=dtype, device=device),
nn.LeakyReLU(0.2, inplace=True),
operations.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1, dtype=dtype, device=device),
)
elif bottleneck_mode == 'large':
self.backbone = nn.Sequential(
operations.Conv2d(c_in, 4096 * 4, kernel_size=1, dtype=dtype, device=device),
nn.LeakyReLU(0.2, inplace=True),
operations.Conv2d(4096 * 4, 1024, kernel_size=1, dtype=dtype, device=device),
*[CNetResBlock(1024, dtype=dtype, device=device, operations=operations) for _ in range(8)],
operations.Conv2d(1024, 1280, kernel_size=1, dtype=dtype, device=device),
)
embd_channels = 1280
else:
raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}')
self.projections = nn.ModuleList()
for _ in range(len(proj_blocks)):
self.projections.append(nn.Sequential(
operations.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False, dtype=dtype, device=device),
nn.LeakyReLU(0.2, inplace=True),
operations.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False, dtype=dtype, device=device),
))
# nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection
self.xl = False
self.input_channels = c_in
self.unshuffle_amount = 8
def forward(self, x):
x = self.backbone(x)
proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)]
for i, idx in enumerate(self.proj_blocks):
proj_outputs[idx] = self.projections[i](x)
return {"input": proj_outputs[::-1]}