Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import copy | |
import inspect | |
import logging | |
import uuid | |
import comfy.utils | |
import comfy.model_management | |
from comfy.types import UnetWrapperFunction | |
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength): | |
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32) | |
lora_diff *= alpha | |
weight_calc = weight + lora_diff.type(weight.dtype) | |
weight_norm = ( | |
weight_calc.transpose(0, 1) | |
.reshape(weight_calc.shape[1], -1) | |
.norm(dim=1, keepdim=True) | |
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1)) | |
.transpose(0, 1) | |
) | |
weight_calc *= (dora_scale / weight_norm).type(weight.dtype) | |
if strength != 1.0: | |
weight_calc -= weight | |
weight += strength * (weight_calc) | |
else: | |
weight[:] = weight_calc | |
return weight | |
def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None): | |
to = model_options["transformer_options"].copy() | |
if "patches_replace" not in to: | |
to["patches_replace"] = {} | |
else: | |
to["patches_replace"] = to["patches_replace"].copy() | |
if name not in to["patches_replace"]: | |
to["patches_replace"][name] = {} | |
else: | |
to["patches_replace"][name] = to["patches_replace"][name].copy() | |
if transformer_index is not None: | |
block = (block_name, number, transformer_index) | |
else: | |
block = (block_name, number) | |
to["patches_replace"][name][block] = patch | |
model_options["transformer_options"] = to | |
return model_options | |
def set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=False): | |
model_options["sampler_post_cfg_function"] = model_options.get("sampler_post_cfg_function", []) + [post_cfg_function] | |
if disable_cfg1_optimization: | |
model_options["disable_cfg1_optimization"] = True | |
return model_options | |
def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_cfg1_optimization=False): | |
model_options["sampler_pre_cfg_function"] = model_options.get("sampler_pre_cfg_function", []) + [pre_cfg_function] | |
if disable_cfg1_optimization: | |
model_options["disable_cfg1_optimization"] = True | |
return model_options | |
class ModelPatcher: | |
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False): | |
self.size = size | |
self.model = model | |
if not hasattr(self.model, 'device'): | |
logging.info("Model doesn't have a device attribute.") | |
self.model.device = offload_device | |
elif self.model.device is None: | |
self.model.device = offload_device | |
self.patches = {} | |
self.backup = {} | |
self.object_patches = {} | |
self.object_patches_backup = {} | |
self.model_options = {"transformer_options":{}} | |
self.model_size() | |
self.load_device = load_device | |
self.offload_device = offload_device | |
self.weight_inplace_update = weight_inplace_update | |
self.model_lowvram = False | |
self.lowvram_patch_counter = 0 | |
self.patches_uuid = uuid.uuid4() | |
def model_size(self): | |
if self.size > 0: | |
return self.size | |
self.size = comfy.model_management.module_size(self.model) | |
return self.size | |
def clone(self): | |
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update) | |
n.patches = {} | |
for k in self.patches: | |
n.patches[k] = self.patches[k][:] | |
n.patches_uuid = self.patches_uuid | |
n.object_patches = self.object_patches.copy() | |
n.model_options = copy.deepcopy(self.model_options) | |
n.backup = self.backup | |
n.object_patches_backup = self.object_patches_backup | |
return n | |
def is_clone(self, other): | |
if hasattr(other, 'model') and self.model is other.model: | |
return True | |
return False | |
def clone_has_same_weights(self, clone): | |
if not self.is_clone(clone): | |
return False | |
if len(self.patches) == 0 and len(clone.patches) == 0: | |
return True | |
if self.patches_uuid == clone.patches_uuid: | |
if len(self.patches) != len(clone.patches): | |
logging.warning("WARNING: something went wrong, same patch uuid but different length of patches.") | |
else: | |
return True | |
def memory_required(self, input_shape): | |
return self.model.memory_required(input_shape=input_shape) | |
def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False): | |
if len(inspect.signature(sampler_cfg_function).parameters) == 3: | |
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way | |
else: | |
self.model_options["sampler_cfg_function"] = sampler_cfg_function | |
if disable_cfg1_optimization: | |
self.model_options["disable_cfg1_optimization"] = True | |
def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False): | |
self.model_options = set_model_options_post_cfg_function(self.model_options, post_cfg_function, disable_cfg1_optimization) | |
def set_model_sampler_pre_cfg_function(self, pre_cfg_function, disable_cfg1_optimization=False): | |
self.model_options = set_model_options_pre_cfg_function(self.model_options, pre_cfg_function, disable_cfg1_optimization) | |
def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction): | |
self.model_options["model_function_wrapper"] = unet_wrapper_function | |
def set_model_denoise_mask_function(self, denoise_mask_function): | |
self.model_options["denoise_mask_function"] = denoise_mask_function | |
def set_model_patch(self, patch, name): | |
to = self.model_options["transformer_options"] | |
if "patches" not in to: | |
to["patches"] = {} | |
to["patches"][name] = to["patches"].get(name, []) + [patch] | |
def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None): | |
self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index) | |
def set_model_attn1_patch(self, patch): | |
self.set_model_patch(patch, "attn1_patch") | |
def set_model_attn2_patch(self, patch): | |
self.set_model_patch(patch, "attn2_patch") | |
def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None): | |
self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index) | |
def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None): | |
self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index) | |
def set_model_attn1_output_patch(self, patch): | |
self.set_model_patch(patch, "attn1_output_patch") | |
def set_model_attn2_output_patch(self, patch): | |
self.set_model_patch(patch, "attn2_output_patch") | |
def set_model_input_block_patch(self, patch): | |
self.set_model_patch(patch, "input_block_patch") | |
def set_model_input_block_patch_after_skip(self, patch): | |
self.set_model_patch(patch, "input_block_patch_after_skip") | |
def set_model_output_block_patch(self, patch): | |
self.set_model_patch(patch, "output_block_patch") | |
def add_object_patch(self, name, obj): | |
self.object_patches[name] = obj | |
def get_model_object(self, name): | |
if name in self.object_patches: | |
return self.object_patches[name] | |
else: | |
if name in self.object_patches_backup: | |
return self.object_patches_backup[name] | |
else: | |
return comfy.utils.get_attr(self.model, name) | |
def model_patches_to(self, device): | |
to = self.model_options["transformer_options"] | |
if "patches" in to: | |
patches = to["patches"] | |
for name in patches: | |
patch_list = patches[name] | |
for i in range(len(patch_list)): | |
if hasattr(patch_list[i], "to"): | |
patch_list[i] = patch_list[i].to(device) | |
if "patches_replace" in to: | |
patches = to["patches_replace"] | |
for name in patches: | |
patch_list = patches[name] | |
for k in patch_list: | |
if hasattr(patch_list[k], "to"): | |
patch_list[k] = patch_list[k].to(device) | |
if "model_function_wrapper" in self.model_options: | |
wrap_func = self.model_options["model_function_wrapper"] | |
if hasattr(wrap_func, "to"): | |
self.model_options["model_function_wrapper"] = wrap_func.to(device) | |
def model_dtype(self): | |
if hasattr(self.model, "get_dtype"): | |
return self.model.get_dtype() | |
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): | |
p = set() | |
model_sd = self.model.state_dict() | |
for k in patches: | |
offset = None | |
function = None | |
if isinstance(k, str): | |
key = k | |
else: | |
offset = k[1] | |
key = k[0] | |
if len(k) > 2: | |
function = k[2] | |
if key in model_sd: | |
p.add(k) | |
current_patches = self.patches.get(key, []) | |
current_patches.append((strength_patch, patches[k], strength_model, offset, function)) | |
self.patches[key] = current_patches | |
self.patches_uuid = uuid.uuid4() | |
return list(p) | |
def get_key_patches(self, filter_prefix=None): | |
comfy.model_management.unload_model_clones(self) | |
model_sd = self.model_state_dict() | |
p = {} | |
for k in model_sd: | |
if filter_prefix is not None: | |
if not k.startswith(filter_prefix): | |
continue | |
if k in self.patches: | |
p[k] = [model_sd[k]] + self.patches[k] | |
else: | |
p[k] = (model_sd[k],) | |
return p | |
def model_state_dict(self, filter_prefix=None): | |
sd = self.model.state_dict() | |
keys = list(sd.keys()) | |
if filter_prefix is not None: | |
for k in keys: | |
if not k.startswith(filter_prefix): | |
sd.pop(k) | |
return sd | |
def patch_weight_to_device(self, key, device_to=None): | |
if key not in self.patches: | |
return | |
weight = comfy.utils.get_attr(self.model, key) | |
inplace_update = self.weight_inplace_update | |
if key not in self.backup: | |
self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update) | |
if device_to is not None: | |
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) | |
else: | |
temp_weight = weight.to(torch.float32, copy=True) | |
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype) | |
if inplace_update: | |
comfy.utils.copy_to_param(self.model, key, out_weight) | |
else: | |
comfy.utils.set_attr_param(self.model, key, out_weight) | |
def patch_model(self, device_to=None, patch_weights=True): | |
for k in self.object_patches: | |
old = comfy.utils.set_attr(self.model, k, self.object_patches[k]) | |
if k not in self.object_patches_backup: | |
self.object_patches_backup[k] = old | |
if patch_weights: | |
model_sd = self.model_state_dict() | |
for key in self.patches: | |
if key not in model_sd: | |
logging.warning("could not patch. key doesn't exist in model: {}".format(key)) | |
continue | |
self.patch_weight_to_device(key, device_to) | |
if device_to is not None: | |
self.model.to(device_to) | |
self.model.device = device_to | |
return self.model | |
def patch_model_lowvram(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False): | |
self.patch_model(device_to, patch_weights=False) | |
logging.info("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024))) | |
class LowVramPatch: | |
def __init__(self, key, model_patcher): | |
self.key = key | |
self.model_patcher = model_patcher | |
def __call__(self, weight): | |
return self.model_patcher.calculate_weight(self.model_patcher.patches[self.key], weight, self.key) | |
mem_counter = 0 | |
patch_counter = 0 | |
for n, m in self.model.named_modules(): | |
lowvram_weight = False | |
if hasattr(m, "comfy_cast_weights"): | |
module_mem = comfy.model_management.module_size(m) | |
if mem_counter + module_mem >= lowvram_model_memory: | |
lowvram_weight = True | |
weight_key = "{}.weight".format(n) | |
bias_key = "{}.bias".format(n) | |
if lowvram_weight: | |
if weight_key in self.patches: | |
if force_patch_weights: | |
self.patch_weight_to_device(weight_key) | |
else: | |
m.weight_function = LowVramPatch(weight_key, self) | |
patch_counter += 1 | |
if bias_key in self.patches: | |
if force_patch_weights: | |
self.patch_weight_to_device(bias_key) | |
else: | |
m.bias_function = LowVramPatch(bias_key, self) | |
patch_counter += 1 | |
m.prev_comfy_cast_weights = m.comfy_cast_weights | |
m.comfy_cast_weights = True | |
else: | |
if hasattr(m, "weight"): | |
self.patch_weight_to_device(weight_key) #TODO: speed this up without causing OOM | |
self.patch_weight_to_device(bias_key) | |
m.to(device_to) | |
mem_counter += comfy.model_management.module_size(m) | |
logging.debug("lowvram: loaded module regularly {} {}".format(n, m)) | |
self.model_lowvram = True | |
self.lowvram_patch_counter = patch_counter | |
self.model.device = device_to | |
return self.model | |
def calculate_weight(self, patches, weight, key): | |
for p in patches: | |
strength = p[0] | |
v = p[1] | |
strength_model = p[2] | |
offset = p[3] | |
function = p[4] | |
if function is None: | |
function = lambda a: a | |
old_weight = None | |
if offset is not None: | |
old_weight = weight | |
weight = weight.narrow(offset[0], offset[1], offset[2]) | |
if strength_model != 1.0: | |
weight *= strength_model | |
if isinstance(v, list): | |
v = (self.calculate_weight(v[1:], v[0].clone(), key), ) | |
if len(v) == 1: | |
patch_type = "diff" | |
elif len(v) == 2: | |
patch_type = v[0] | |
v = v[1] | |
if patch_type == "diff": | |
w1 = v[0] | |
if strength != 0.0: | |
if w1.shape != weight.shape: | |
logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) | |
else: | |
weight += function(strength * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)) | |
elif patch_type == "lora": #lora/locon | |
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32) | |
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32) | |
dora_scale = v[4] | |
if v[2] is not None: | |
alpha = v[2] / mat2.shape[0] | |
else: | |
alpha = 1.0 | |
if v[3] is not None: | |
#locon mid weights, hopefully the math is fine because I didn't properly test it | |
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32) | |
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] | |
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) | |
try: | |
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength)) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
logging.error("ERROR {} {} {}".format(patch_type, key, e)) | |
elif patch_type == "lokr": | |
w1 = v[0] | |
w2 = v[1] | |
w1_a = v[3] | |
w1_b = v[4] | |
w2_a = v[5] | |
w2_b = v[6] | |
t2 = v[7] | |
dora_scale = v[8] | |
dim = None | |
if w1 is None: | |
dim = w1_b.shape[0] | |
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32), | |
comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32)) | |
else: | |
w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32) | |
if w2 is None: | |
dim = w2_b.shape[0] | |
if t2 is None: | |
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32), | |
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32)) | |
else: | |
w2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
comfy.model_management.cast_to_device(t2, weight.device, torch.float32), | |
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32), | |
comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32)) | |
else: | |
w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32) | |
if len(w2.shape) == 4: | |
w1 = w1.unsqueeze(2).unsqueeze(2) | |
if v[2] is not None and dim is not None: | |
alpha = v[2] / dim | |
else: | |
alpha = 1.0 | |
try: | |
lora_diff = torch.kron(w1, w2).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength)) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
logging.error("ERROR {} {} {}".format(patch_type, key, e)) | |
elif patch_type == "loha": | |
w1a = v[0] | |
w1b = v[1] | |
if v[2] is not None: | |
alpha = v[2] / w1b.shape[0] | |
else: | |
alpha = 1.0 | |
w2a = v[3] | |
w2b = v[4] | |
dora_scale = v[7] | |
if v[5] is not None: #cp decomposition | |
t1 = v[5] | |
t2 = v[6] | |
m1 = torch.einsum('i j k l, j r, i p -> p r k l', | |
comfy.model_management.cast_to_device(t1, weight.device, torch.float32), | |
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32), | |
comfy.model_management.cast_to_device(w1a, weight.device, torch.float32)) | |
m2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
comfy.model_management.cast_to_device(t2, weight.device, torch.float32), | |
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32), | |
comfy.model_management.cast_to_device(w2a, weight.device, torch.float32)) | |
else: | |
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32), | |
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32)) | |
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32), | |
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32)) | |
try: | |
lora_diff = (m1 * m2).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength)) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
logging.error("ERROR {} {} {}".format(patch_type, key, e)) | |
elif patch_type == "glora": | |
if v[4] is not None: | |
alpha = v[4] / v[0].shape[0] | |
else: | |
alpha = 1.0 | |
dora_scale = v[5] | |
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32) | |
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32) | |
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32) | |
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32) | |
try: | |
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = function(weight_decompose(dora_scale, weight, lora_diff, alpha, strength)) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
logging.error("ERROR {} {} {}".format(patch_type, key, e)) | |
else: | |
logging.warning("patch type not recognized {} {}".format(patch_type, key)) | |
if old_weight is not None: | |
weight = old_weight | |
return weight | |
def unpatch_model(self, device_to=None, unpatch_weights=True): | |
if unpatch_weights: | |
if self.model_lowvram: | |
for m in self.model.modules(): | |
if hasattr(m, "prev_comfy_cast_weights"): | |
m.comfy_cast_weights = m.prev_comfy_cast_weights | |
del m.prev_comfy_cast_weights | |
m.weight_function = None | |
m.bias_function = None | |
self.model_lowvram = False | |
self.lowvram_patch_counter = 0 | |
keys = list(self.backup.keys()) | |
if self.weight_inplace_update: | |
for k in keys: | |
comfy.utils.copy_to_param(self.model, k, self.backup[k]) | |
else: | |
for k in keys: | |
comfy.utils.set_attr_param(self.model, k, self.backup[k]) | |
self.backup.clear() | |
if device_to is not None: | |
self.model.to(device_to) | |
self.model.device = device_to | |
keys = list(self.object_patches_backup.keys()) | |
for k in keys: | |
comfy.utils.set_attr(self.model, k, self.object_patches_backup[k]) | |
self.object_patches_backup.clear() | |
def current_loaded_device(self): | |
return self.model.device | |