Spaces:
Running
on
Zero
Running
on
Zero
""" | |
This file is part of ComfyUI. | |
Copyright (C) 2024 Stability AI | |
This program is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
This program is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with this program. If not, see <https://www.gnu.org/licenses/>. | |
""" | |
import torch | |
import comfy.model_management | |
def cast_to(weight, dtype=None, device=None, non_blocking=False): | |
return weight.to(device=device, dtype=dtype, non_blocking=non_blocking) | |
def cast_to_input(weight, input, non_blocking=False): | |
return cast_to(weight, input.dtype, input.device, non_blocking=non_blocking) | |
def cast_bias_weight(s, input=None, dtype=None, device=None): | |
if input is not None: | |
if dtype is None: | |
dtype = input.dtype | |
if device is None: | |
device = input.device | |
bias = None | |
non_blocking = comfy.model_management.device_should_use_non_blocking(device) | |
if s.bias is not None: | |
bias = cast_to(s.bias, dtype, device, non_blocking=non_blocking) | |
if s.bias_function is not None: | |
bias = s.bias_function(bias) | |
weight = cast_to(s.weight, dtype, device, non_blocking=non_blocking) | |
if s.weight_function is not None: | |
weight = s.weight_function(weight) | |
return weight, bias | |
class CastWeightBiasOp: | |
comfy_cast_weights = False | |
weight_function = None | |
bias_function = None | |
class disable_weight_init: | |
class Linear(torch.nn.Linear, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.linear(input, weight, bias) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class Conv1d(torch.nn.Conv1d, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return self._conv_forward(input, weight, bias) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class Conv2d(torch.nn.Conv2d, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return self._conv_forward(input, weight, bias) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class Conv3d(torch.nn.Conv3d, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return self._conv_forward(input, weight, bias) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input): | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input): | |
if self.weight is not None: | |
weight, bias = cast_bias_weight(self, input) | |
else: | |
weight = None | |
bias = None | |
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input, output_size=None): | |
num_spatial_dims = 2 | |
output_padding = self._output_padding( | |
input, output_size, self.stride, self.padding, self.kernel_size, | |
num_spatial_dims, self.dilation) | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.conv_transpose2d( | |
input, weight, bias, self.stride, self.padding, | |
output_padding, self.groups, self.dilation) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class ConvTranspose1d(torch.nn.ConvTranspose1d, CastWeightBiasOp): | |
def reset_parameters(self): | |
return None | |
def forward_comfy_cast_weights(self, input, output_size=None): | |
num_spatial_dims = 1 | |
output_padding = self._output_padding( | |
input, output_size, self.stride, self.padding, self.kernel_size, | |
num_spatial_dims, self.dilation) | |
weight, bias = cast_bias_weight(self, input) | |
return torch.nn.functional.conv_transpose1d( | |
input, weight, bias, self.stride, self.padding, | |
output_padding, self.groups, self.dilation) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
return super().forward(*args, **kwargs) | |
class Embedding(torch.nn.Embedding, CastWeightBiasOp): | |
def reset_parameters(self): | |
self.bias = None | |
return None | |
def forward_comfy_cast_weights(self, input, out_dtype=None): | |
output_dtype = out_dtype | |
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16: | |
out_dtype = None | |
weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype) | |
return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype) | |
def forward(self, *args, **kwargs): | |
if self.comfy_cast_weights: | |
return self.forward_comfy_cast_weights(*args, **kwargs) | |
else: | |
if "out_dtype" in kwargs: | |
kwargs.pop("out_dtype") | |
return super().forward(*args, **kwargs) | |
def conv_nd(s, dims, *args, **kwargs): | |
if dims == 2: | |
return s.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return s.Conv3d(*args, **kwargs) | |
else: | |
raise ValueError(f"unsupported dimensions: {dims}") | |
class manual_cast(disable_weight_init): | |
class Linear(disable_weight_init.Linear): | |
comfy_cast_weights = True | |
class Conv1d(disable_weight_init.Conv1d): | |
comfy_cast_weights = True | |
class Conv2d(disable_weight_init.Conv2d): | |
comfy_cast_weights = True | |
class Conv3d(disable_weight_init.Conv3d): | |
comfy_cast_weights = True | |
class GroupNorm(disable_weight_init.GroupNorm): | |
comfy_cast_weights = True | |
class LayerNorm(disable_weight_init.LayerNorm): | |
comfy_cast_weights = True | |
class ConvTranspose2d(disable_weight_init.ConvTranspose2d): | |
comfy_cast_weights = True | |
class ConvTranspose1d(disable_weight_init.ConvTranspose1d): | |
comfy_cast_weights = True | |
class Embedding(disable_weight_init.Embedding): | |
comfy_cast_weights = True | |