Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import importlib.util | |
from comfy.cli_args import args | |
import subprocess | |
#Can't use pytorch to get the GPU names because the cuda malloc has to be set before the first import. | |
def get_gpu_names(): | |
if os.name == 'nt': | |
import ctypes | |
# Define necessary C structures and types | |
class DISPLAY_DEVICEA(ctypes.Structure): | |
_fields_ = [ | |
('cb', ctypes.c_ulong), | |
('DeviceName', ctypes.c_char * 32), | |
('DeviceString', ctypes.c_char * 128), | |
('StateFlags', ctypes.c_ulong), | |
('DeviceID', ctypes.c_char * 128), | |
('DeviceKey', ctypes.c_char * 128) | |
] | |
# Load user32.dll | |
user32 = ctypes.windll.user32 | |
# Call EnumDisplayDevicesA | |
def enum_display_devices(): | |
device_info = DISPLAY_DEVICEA() | |
device_info.cb = ctypes.sizeof(device_info) | |
device_index = 0 | |
gpu_names = set() | |
while user32.EnumDisplayDevicesA(None, device_index, ctypes.byref(device_info), 0): | |
device_index += 1 | |
gpu_names.add(device_info.DeviceString.decode('utf-8')) | |
return gpu_names | |
return enum_display_devices() | |
else: | |
gpu_names = set() | |
out = subprocess.check_output(['nvidia-smi', '-L']) | |
for l in out.split(b'\n'): | |
if len(l) > 0: | |
gpu_names.add(l.decode('utf-8').split(' (UUID')[0]) | |
return gpu_names | |
blacklist = {"GeForce GTX TITAN X", "GeForce GTX 980", "GeForce GTX 970", "GeForce GTX 960", "GeForce GTX 950", "GeForce 945M", | |
"GeForce 940M", "GeForce 930M", "GeForce 920M", "GeForce 910M", "GeForce GTX 750", "GeForce GTX 745", "Quadro K620", | |
"Quadro K1200", "Quadro K2200", "Quadro M500", "Quadro M520", "Quadro M600", "Quadro M620", "Quadro M1000", | |
"Quadro M1200", "Quadro M2000", "Quadro M2200", "Quadro M3000", "Quadro M4000", "Quadro M5000", "Quadro M5500", "Quadro M6000", | |
"GeForce MX110", "GeForce MX130", "GeForce 830M", "GeForce 840M", "GeForce GTX 850M", "GeForce GTX 860M", | |
"GeForce GTX 1650", "GeForce GTX 1630", "Tesla M4", "Tesla M6", "Tesla M10", "Tesla M40", "Tesla M60" | |
} | |
def cuda_malloc_supported(): | |
try: | |
names = get_gpu_names() | |
except: | |
names = set() | |
for x in names: | |
if "NVIDIA" in x: | |
for b in blacklist: | |
if b in x: | |
return False | |
return True | |
if not args.cuda_malloc: | |
try: | |
version = "" | |
torch_spec = importlib.util.find_spec("torch") | |
for folder in torch_spec.submodule_search_locations: | |
ver_file = os.path.join(folder, "version.py") | |
if os.path.isfile(ver_file): | |
spec = importlib.util.spec_from_file_location("torch_version_import", ver_file) | |
module = importlib.util.module_from_spec(spec) | |
spec.loader.exec_module(module) | |
version = module.__version__ | |
if int(version[0]) >= 2: #enable by default for torch version 2.0 and up | |
args.cuda_malloc = cuda_malloc_supported() | |
except: | |
pass | |
if args.cuda_malloc and not args.disable_cuda_malloc: | |
env_var = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', None) | |
if env_var is None: | |
env_var = "backend:cudaMallocAsync" | |
else: | |
env_var += ",backend:cudaMallocAsync" | |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = env_var | |