README / README.md
ZeroWw's picture
Update README.md
56c77b3 verified
|
raw
history blame
6.77 kB
metadata
title: README
emoji: 🔥
colorFrom: purple
colorTo: purple
sdk: static
pinned: true

These are my own quantizations (updated almost daily).

The difference with normal quantizations is that I quantize the output and embed tensors to f16.
and the other tensors to 15_k,q6_k or q8_0.
This creates models that are little or not degraded at all and have a smaller size.
They run at about 3-6 t/sec on CPU only using llama.cpp
And obviously faster on computers with potent GPUs

ALL the models were quantized in this way:
quantize.exe --allow-requantize --output-tensor-type f16 --token-embedding-type f16 model.f16.gguf model.f16.q5.gguf q5_k
quantize.exe --allow-requantize --output-tensor-type f16 --token-embedding-type f16 model.f16.gguf model.f16.q6.gguf q6_k
quantize.exe --allow-requantize --output-tensor-type f16 --token-embedding-type f16 model.f16.gguf model.f16.q6.gguf q8_0
quantize.exe --allow-requantize --pure model.f16.gguf model.f16.q8_p.gguf q8_0
and there is also a pure f16 and a pure q8 in every directory.