Spaces:
Runtime error
Runtime error
File size: 14,273 Bytes
b6dd358 85d241c b6dd358 b2a8658 aab7fa9 b6dd358 de4aa1c b6dd358 3746f14 b6dd358 3746f14 0f09c7c 3746f14 0f09c7c 3746f14 0f09c7c 3746f14 b6dd358 3746f14 b6dd358 dfa70ec 89023a7 dfa70ec e660aea 7ee08c3 04dbeac dfa70ec c1ef964 dfa70ec c1ef964 dfa70ec c1ef964 3746f14 dfa70ec c1ef964 dfa70ec c1ef964 dfa70ec c1ef964 dfa70ec 3746f14 dfa70ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
# %%
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from networks.mat import Generator
import gradio as gr
import gradio.components as gc
import base64
import glob
import os
import random
import re
from http import HTTPStatus
from io import BytesIO
from typing import Dict, List, NamedTuple, Optional, Tuple
import click
import cv2
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from PIL import Image, ImageDraw, ImageOps
from pydantic import BaseModel
import dnnlib
import legacy
pyspng = None
def num_range(s: str) -> List[int]:
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return list(range(int(m.group(1)), int(m.group(2))+1))
vals = s.split(',')
return [int(x) for x in vals]
def copy_params_and_buffers(src_module, dst_module, require_all=False):
assert isinstance(src_module, torch.nn.Module)
assert isinstance(dst_module, torch.nn.Module)
src_tensors = {name: tensor for name,
tensor in named_params_and_buffers(src_module)}
for name, tensor in named_params_and_buffers(dst_module):
assert (name in src_tensors) or (not require_all)
if name in src_tensors:
tensor.copy_(src_tensors[name].detach()).requires_grad_(
tensor.requires_grad)
def params_and_buffers(module):
assert isinstance(module, torch.nn.Module)
return list(module.parameters()) + list(module.buffers())
def named_params_and_buffers(module):
assert isinstance(module, torch.nn.Module)
return list(module.named_parameters()) + list(module.named_buffers())
class Inpainter:
def __init__(self,
network_pkl,
resolution=512,
truncation_psi=1,
noise_mode='const',
sdevice='cpu'
):
self.resolution = resolution
self.truncation_psi = truncation_psi
self.noise_mode = noise_mode
print(f'Loading networks from: {network_pkl}')
self.device = torch.device(sdevice)
with dnnlib.util.open_url(network_pkl) as f:
G_saved = (
legacy.load_network_pkl(f)
['G_ema']
.to(self.device)
.eval()
.requires_grad_(False)) # type: ignore
net_res = 512 if resolution > 512 else resolution
self.G = (
Generator(
z_dim=512,
c_dim=0,
w_dim=512,
img_resolution=net_res,
img_channels=3
)
.to(self.device)
.eval()
.requires_grad_(False)
)
copy_params_and_buffers(G_saved, self.G, require_all=True)
def generate_images2(
self,
dpath: List[PIL.Image.Image],
mpath: List[Optional[PIL.Image.Image]],
seed: int = 42,
):
"""
Generate images using pretrained network pickle.
"""
resolution = self.resolution
truncation_psi = self.truncation_psi
noise_mode = self.noise_mode
# seed = 240 # pick up a random number
def seed_all(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if seed is not None:
seed_all(seed)
# no Labels.
label = torch.zeros([1, self.G.c_dim], device=self.device)
def read_image(image):
image = np.array(image)
if image.ndim == 2:
image = image[:, :, np.newaxis] # HW => HWC
image = np.repeat(image, 3, axis=2)
image = image.transpose(2, 0, 1) # HWC => CHW
image = image[:3]
return image
if resolution != 512:
noise_mode = 'random'
results = []
with torch.no_grad():
for i, (ipath, m) in enumerate(zip(dpath, mpath)):
if seed is None:
seed_all(i)
image = read_image(ipath)
image = (torch.from_numpy(image).float().to(
self. device) / 127.5 - 1).unsqueeze(0)
mask = np.array(m).astype(np.float32) / 255.0
mask = torch.from_numpy(mask).float().to(
self. device).unsqueeze(0).unsqueeze(0)
z = torch.from_numpy(np.random.randn(
1, self.G.z_dim)).to(self.device)
output = self.G(image, mask, z, label,
truncation_psi=truncation_psi, noise_mode=noise_mode)
output = (output.permute(0, 2, 3, 1) * 127.5 +
127.5).round().clamp(0, 255).to(torch.uint8)
output = output[0].cpu().numpy()
results.append(PIL.Image.fromarray(output, 'RGB'))
return results
# if __name__ == "__main__":
# generate_images() # pylint: disable=no-value-for-parameter
# ----------------------------------------------------------------------------
def mask_to_alpha(img, mask):
img = img.copy()
img.putalpha(mask)
return img
def blend(src, target, mask):
mask = np.expand_dims(mask, axis=-1)
result = (1-mask) * src + mask * target
return Image.fromarray(result.astype(np.uint8))
def pad(img, size=(128, 128), tosize=(512, 512), border=1):
if isinstance(size, float):
size = (int(img.size[0] * size), int(img.size[1] * size))
# remove border
w, h = tosize
new_img = Image.new('RGBA', (w, h))
rimg = img.resize(size, resample=Image.Resampling.NEAREST)
rimg = ImageOps.crop(rimg, border=border)
tw, th = size
tw, th = tw - border*2, th - border*2
tc = ((w-tw)//2, (h-th)//2)
new_img.paste(rimg, tc)
mask = Image.new('L', (w, h))
white = Image.new('L', (tw, th), 255)
mask.paste(white, tc)
if 'A' in rimg.getbands():
mask.paste(rimg.getchannel('A'), tc)
return new_img, mask
def b64_to_img(b64):
return Image.open(BytesIO(base64.b64decode(b64)))
def img_to_b64(img):
with BytesIO() as f:
img.save(f, format='PNG')
return base64.b64encode(f.getvalue()).decode('utf-8')
class Predictor:
def __init__(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.models = {
"places2": Inpainter(
network_pkl='models/Places_512_FullData.pkl',
resolution=512,
truncation_psi=1.,
noise_mode='const',
),
"places2+laion300k": Inpainter(
network_pkl='models/Places_512_FullData+LAION300k.pkl',
resolution=512,
truncation_psi=1.,
noise_mode='const',
),
"places2+laion300k+laion300k(opmasked)": Inpainter(
network_pkl='models/Places_512_FullData+LAION300k+OPM300k.pkl',
resolution=512,
truncation_psi=1.,
noise_mode='const',
),
"places2+laion300k+laion1200k(opmasked)": Inpainter(
network_pkl='models/Places_512_FullData+LAION300k+OPM1200k.pkl',
resolution=512,
truncation_psi=1.,
noise_mode='const',
),
}
# The arguments and types the model takes as input
def predict(
self,
img: Image.Image,
tosize=(512, 512),
border=5,
seed=42,
size=0.5,
model='places2',
) -> Image:
i, m = pad(
img,
size=size, # (328, 328),
tosize=tosize,
border=border
)
"""Run a single prediction on the model"""
imgs = self.models[model].generate_images2(
dpath=[i.resize((512, 512), resample=Image.Resampling.NEAREST)],
mpath=[m.resize((512, 512), resample=Image.Resampling.NEAREST)],
seed=seed,
)
img_op_raw = imgs[0].convert('RGBA')
img_op_raw = img_op_raw.resize(
tosize, resample=Image.Resampling.NEAREST)
inpainted = img_op_raw.copy()
# paste original image to remove inpainting/scaling artifacts
inpainted = blend(
i,
inpainted,
1-(np.array(m) / 255)
)
minpainted = mask_to_alpha(inpainted, m)
return inpainted, minpainted, ImageOps.invert(m)
def predict_tiled(
self,
img: Image.Image,
tosize=(512, 512),
border=5,
seed=42,
size=0.5,
model='places2',
) -> Image:
i, morig = pad(
img,
size=size, # (328, 328),
tosize=tosize,
border=border
)
i.putalpha(morig)
img = i
# img.save('0.png')
assert img.width == img.height
assert img.width > 512 and img.width < 512*2
def tile_coords(image, n=2, tile_size=512):
assert image.width == image.height
offsets = np.linspace(0, image.width - tile_size, n).astype(int)
for i in range(n):
for j in range(n):
left = offsets[j]
upper = offsets[i]
right = left + tile_size
lower = upper + tile_size
# tile = image.crop((left, upper, right, lower))
yield [left, upper, right, lower]
for ix, tc in enumerate(tile_coords(img, n=2)):
i = img.crop(tc)
# i.save(f't{ix}.png')
m = i.getchannel('A')
"""Run a single prediction on the model"""
imgs = self.models[model].generate_images2(
dpath=[i.resize((512, 512), resample=Image.Resampling.NEAREST)],
mpath=[m.resize((512, 512), resample=Image.Resampling.NEAREST)],
seed=seed,
)
img_op_raw = imgs[0].convert('RGBA')
# img_op_raw = img_op_raw.resize(tosize, resample=Image.Resampling.NEAREST)
inpainted = img_op_raw.copy()
# paste original image to remove inpainting/scaling artifacts
inpainted = blend(
i,
inpainted,
1-(np.array(m) / 255)
)
# inpainted.save(f't{ix}_op.png')
minpainted = mask_to_alpha(inpainted, m)
# continue with partially inpainted image
# since the tiles overlap, the next tile will contain (possibly inpainted) parts of the previous tile
img.paste(inpainted, tc)
# restore original alpha channel
img.putalpha(morig)
return img.convert('RGB'), img, ImageOps.invert(img.getchannel('A'))
predictor = Predictor()
# %%
def _outpaint(img, tosize, border, seed, size, model, tiled):
if tiled:
img_op = predictor.predict_tiled(
img,
border=border,
seed=seed,
tosize=(tosize, tosize),
size=float(size),
model=model,
)
else:
img_op = predictor.predict(
img,
border=border,
seed=seed,
tosize=(tosize, tosize),
size=float(size),
model=model,
)
return img_op
# %%
with gr.Blocks() as demo:
maturl = 'https://github.com/fenglinglwb/MAT'
gr.Markdown(f'''
# MAT Primer for Stable Diffusion
## based on MAT: Mask-Aware Transformer for Large Hole Image Inpainting
### create a primer for use in stable diffusion outpainting
i have added 2 example scripts to the repo:
- outpainting_example1.py using the inpainting pipeline
- outpainting_example2.py using the img2img pipeline. this is basically what i used for the examples below
''')
gr.HTML(f'''<a href="{maturl}">{maturl}</a>''')
with gr.Box():
with gr.Row():
gr.Markdown(f"""example with strength 0.5""")
with gr.Row():
gr.HTML("<img src='file/hild.gif'> ")
gr.HTML("<img src='file/process.gif'>")
gr.HTML("<img src='file/flagscapes.gif'>")
btn = gr.Button("Run", variant="primary")
with gr.Row():
with gr.Column():
searchimage = gc.Image(label="image", type='pil', image_mode='RGBA')
to_size = gc.Slider(1, 1920, 512, step=1, label='output size')
border = gc.Slider(1, 50, 0, step=1, label='border to crop from the image before outpainting')
seed = gc.Slider(1, 65536, 10, step=1, label='seed')
size = gc.Slider(0, 1, .5, step=0.01,label='scale of the image before outpainting')
tiled = gc.Checkbox(label='tiled: run the network with 4 tiles of size 512x512 . only usable if output size >512 and <1024', value=False)
model = gc.Dropdown(
choices=['places2',
'places2+laion300k',
'places2+laion300k+laion300k(opmasked)',
'places2+laion300k+laion1200k(opmasked)'],
value='places2+laion300k+laion1200k(opmasked)',
label='model',
)
with gr.Column():
outwithoutalpha = gc.Image(label="primed image without alpha channel", type='pil', image_mode='RGBA')
mask = gc.Image(label="outpainting mask", type='pil')
out = gc.Image(label="primed image with alpha channel",type='pil', image_mode='RGBA')
btn.click(
fn=_outpaint,
inputs=[searchimage, to_size, border, seed, size, model,tiled],
outputs=[outwithoutalpha, out, mask])
# %% launch
demo.launch()
|