Spaces:
Runtime error
Runtime error
stable-outpainting
#1
by
random23
- opened
- .gitattributes +0 -1
- 20221109.3a1e97df21bbdb63.gif +0 -3
- app.py +39 -161
- bread.gif +0 -3
- flagscapes.gif +0 -3
- generate_image.py +162 -0
- heineken.gif +0 -3
- hild.gif +0 -3
- models/Places_512_FullData+LAION300k+OPM1200k.pkl +0 -3
- models/Places_512_FullData+LAION300k+OPM300k.pkl +0 -3
- models/Places_512_FullData+LAION300k.pkl +0 -3
- msoffice.gif +0 -3
- op.gif +0 -3
- outpainting_example1.py +0 -38
- outpainting_example2.py +0 -197
- process.gif +0 -3
- walmart.gif +0 -3
.gitattributes
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.gif filter=lfs diff=lfs merge=lfs -text
|
3 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
5 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
|
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
20221109.3a1e97df21bbdb63.gif
DELETED
Git LFS Details
|
app.py
CHANGED
@@ -201,7 +201,7 @@ def pad(img, size=(128, 128), tosize=(512, 512), border=1):
|
|
201 |
mask.paste(white, tc)
|
202 |
|
203 |
if 'A' in rimg.getbands():
|
204 |
-
mask.paste(
|
205 |
return new_img, mask
|
206 |
|
207 |
|
@@ -218,33 +218,12 @@ def img_to_b64(img):
|
|
218 |
class Predictor:
|
219 |
def __init__(self):
|
220 |
"""Load the model into memory to make running multiple predictions efficient"""
|
221 |
-
self.
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
),
|
228 |
-
"places2+laion300k": Inpainter(
|
229 |
-
network_pkl='models/Places_512_FullData+LAION300k.pkl',
|
230 |
-
resolution=512,
|
231 |
-
truncation_psi=1.,
|
232 |
-
noise_mode='const',
|
233 |
-
),
|
234 |
-
"places2+laion300k+laion300k(opmasked)": Inpainter(
|
235 |
-
network_pkl='models/Places_512_FullData+LAION300k+OPM300k.pkl',
|
236 |
-
resolution=512,
|
237 |
-
truncation_psi=1.,
|
238 |
-
noise_mode='const',
|
239 |
-
),
|
240 |
-
"places2+laion300k+laion1200k(opmasked)": Inpainter(
|
241 |
-
network_pkl='models/Places_512_FullData+LAION300k+OPM1200k.pkl',
|
242 |
-
resolution=512,
|
243 |
-
truncation_psi=1.,
|
244 |
-
noise_mode='const',
|
245 |
-
),
|
246 |
-
|
247 |
-
}
|
248 |
|
249 |
# The arguments and types the model takes as input
|
250 |
|
@@ -255,7 +234,6 @@ class Predictor:
|
|
255 |
border=5,
|
256 |
seed=42,
|
257 |
size=0.5,
|
258 |
-
model='places2',
|
259 |
) -> Image:
|
260 |
i, m = pad(
|
261 |
img,
|
@@ -264,7 +242,7 @@ class Predictor:
|
|
264 |
border=border
|
265 |
)
|
266 |
"""Run a single prediction on the model"""
|
267 |
-
imgs = self.
|
268 |
dpath=[i.resize((512, 512), resample=Image.Resampling.NEAREST)],
|
269 |
mpath=[m.resize((512, 512), resample=Image.Resampling.NEAREST)],
|
270 |
seed=seed,
|
@@ -281,148 +259,48 @@ class Predictor:
|
|
281 |
1-(np.array(m) / 255)
|
282 |
)
|
283 |
minpainted = mask_to_alpha(inpainted, m)
|
284 |
-
return inpainted,
|
285 |
|
286 |
-
def predict_tiled(
|
287 |
-
self,
|
288 |
-
img: Image.Image,
|
289 |
-
tosize=(512, 512),
|
290 |
-
border=5,
|
291 |
-
seed=42,
|
292 |
-
size=0.5,
|
293 |
-
model='places2',
|
294 |
-
) -> Image:
|
295 |
|
296 |
-
i, morig = pad(
|
297 |
-
img,
|
298 |
-
size=size, # (328, 328),
|
299 |
-
tosize=tosize,
|
300 |
-
border=border
|
301 |
-
)
|
302 |
-
i.putalpha(morig)
|
303 |
-
img = i
|
304 |
-
# img.save('0.png')
|
305 |
-
assert img.width == img.height
|
306 |
-
assert img.width > 512 and img.width <= 512*2
|
307 |
-
|
308 |
-
def tile_coords(image, n=2, tile_size=512):
|
309 |
-
assert image.width == image.height
|
310 |
-
offsets = np.linspace(0, image.width - tile_size, n).astype(int)
|
311 |
-
for i in range(n):
|
312 |
-
for j in range(n):
|
313 |
-
left = offsets[j]
|
314 |
-
upper = offsets[i]
|
315 |
-
right = left + tile_size
|
316 |
-
lower = upper + tile_size
|
317 |
-
# tile = image.crop((left, upper, right, lower))
|
318 |
-
yield [left, upper, right, lower]
|
319 |
-
|
320 |
-
for ix, tc in enumerate(tile_coords(img, n=2)):
|
321 |
-
i = img.crop(tc)
|
322 |
-
# i.save(f't{ix}.png')
|
323 |
-
m = i.getchannel('A')
|
324 |
-
|
325 |
-
"""Run a single prediction on the model"""
|
326 |
-
imgs = self.models[model].generate_images2(
|
327 |
-
dpath=[i.resize((512, 512), resample=Image.Resampling.NEAREST)],
|
328 |
-
mpath=[m.resize((512, 512), resample=Image.Resampling.NEAREST)],
|
329 |
-
seed=seed,
|
330 |
-
)
|
331 |
-
img_op_raw = imgs[0].convert('RGBA')
|
332 |
-
# img_op_raw = img_op_raw.resize(tosize, resample=Image.Resampling.NEAREST)
|
333 |
-
inpainted = img_op_raw.copy()
|
334 |
-
|
335 |
-
# paste original image to remove inpainting/scaling artifacts
|
336 |
-
inpainted = blend(
|
337 |
-
i,
|
338 |
-
inpainted,
|
339 |
-
1-(np.array(m) / 255)
|
340 |
-
)
|
341 |
-
# inpainted.save(f't{ix}_op.png')
|
342 |
-
minpainted = mask_to_alpha(inpainted, m)
|
343 |
-
# continue with partially inpainted image
|
344 |
-
# since the tiles overlap, the next tile will contain (possibly inpainted) parts of the previous tile
|
345 |
-
img.paste(inpainted, tc)
|
346 |
-
|
347 |
-
# restore original alpha channel
|
348 |
-
img.putalpha(morig)
|
349 |
-
return img.convert('RGB'), img, ImageOps.invert(img.getchannel('A'))
|
350 |
predictor = Predictor()
|
351 |
|
352 |
# %%
|
353 |
|
354 |
|
355 |
-
def _outpaint(img, tosize, border, seed, size
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
model=model,
|
364 |
-
)
|
365 |
-
else:
|
366 |
-
img_op = predictor.predict(
|
367 |
-
img,
|
368 |
-
border=border,
|
369 |
-
seed=seed,
|
370 |
-
tosize=(tosize, tosize),
|
371 |
-
size=float(size),
|
372 |
-
model=model,
|
373 |
-
)
|
374 |
return img_op
|
375 |
# %%
|
376 |
|
377 |
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
gr.HTML(f'''<a href="{maturl}">{maturl}</a>''')
|
391 |
-
with gr.Box():
|
392 |
-
with gr.Row():
|
393 |
-
gr.Markdown(f"""example with strength 0.5""")
|
394 |
-
with gr.Row():
|
395 |
-
gr.HTML("<img src='file/hild.gif'> ")
|
396 |
-
gr.HTML("<img src='file/process.gif'>")
|
397 |
-
gr.HTML("<img src='file/flagscapes.gif'>")
|
398 |
-
btn = gr.Button("Run", variant="primary")
|
399 |
-
with gr.Row():
|
400 |
-
with gr.Column():
|
401 |
-
searchimage = gc.Image(label="image", type='pil', image_mode='RGBA')
|
402 |
-
to_size = gc.Slider(1, 1920, 512, step=1, label='output size')
|
403 |
-
border = gc.Slider(1, 50, 0, step=1, label='border to crop from the image before outpainting')
|
404 |
-
seed = gc.Slider(1, 65536, 10, step=1, label='seed')
|
405 |
-
size = gc.Slider(0, 1, .5, step=0.01,label='scale of the image before outpainting')
|
406 |
-
tiled = gc.Checkbox(label='tiled: run the network with 4 tiles of size 512x512 . only usable if output size >512 and <=1024', value=False)
|
407 |
-
|
408 |
-
model = gc.Dropdown(
|
409 |
-
choices=['places2',
|
410 |
-
'places2+laion300k',
|
411 |
-
'places2+laion300k+laion300k(opmasked)',
|
412 |
-
'places2+laion300k+laion1200k(opmasked)'],
|
413 |
-
value='places2+laion300k+laion1200k(opmasked)',
|
414 |
-
label='model',
|
415 |
-
)
|
416 |
-
with gr.Column():
|
417 |
-
outwithoutalpha = gc.Image(label="primed image without alpha channel", type='pil', image_mode='RGBA')
|
418 |
-
mask = gc.Image(label="outpainting mask", type='pil')
|
419 |
-
out = gc.Image(label="primed image with alpha channel",type='pil', image_mode='RGBA')
|
420 |
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
|
|
|
|
|
|
|
|
|
|
425 |
|
426 |
|
427 |
-
|
428 |
-
demo.launch()
|
|
|
201 |
mask.paste(white, tc)
|
202 |
|
203 |
if 'A' in rimg.getbands():
|
204 |
+
mask.paste(img.getchannel('A'), tc)
|
205 |
return new_img, mask
|
206 |
|
207 |
|
|
|
218 |
class Predictor:
|
219 |
def __init__(self):
|
220 |
"""Load the model into memory to make running multiple predictions efficient"""
|
221 |
+
self.model = Inpainter(
|
222 |
+
network_pkl='models/Places_512_FullData.pkl',
|
223 |
+
resolution=512,
|
224 |
+
truncation_psi=1.,
|
225 |
+
noise_mode='const',
|
226 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
# The arguments and types the model takes as input
|
229 |
|
|
|
234 |
border=5,
|
235 |
seed=42,
|
236 |
size=0.5,
|
|
|
237 |
) -> Image:
|
238 |
i, m = pad(
|
239 |
img,
|
|
|
242 |
border=border
|
243 |
)
|
244 |
"""Run a single prediction on the model"""
|
245 |
+
imgs = self.model.generate_images2(
|
246 |
dpath=[i.resize((512, 512), resample=Image.Resampling.NEAREST)],
|
247 |
mpath=[m.resize((512, 512), resample=Image.Resampling.NEAREST)],
|
248 |
seed=seed,
|
|
|
259 |
1-(np.array(m) / 255)
|
260 |
)
|
261 |
minpainted = mask_to_alpha(inpainted, m)
|
262 |
+
return minpainted, inpainted, ImageOps.invert(m)
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
predictor = Predictor()
|
266 |
|
267 |
# %%
|
268 |
|
269 |
|
270 |
+
def _outpaint(img, tosize, border, seed, size):
|
271 |
+
img_op = predictor.predict(
|
272 |
+
img,
|
273 |
+
border=border,
|
274 |
+
seed=seed,
|
275 |
+
tosize=(tosize, tosize),
|
276 |
+
size=float(size)
|
277 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
return img_op
|
279 |
# %%
|
280 |
|
281 |
|
282 |
+
searchimage = gc.Image(shape=(224, 224), label="image", type='pil')
|
283 |
+
to_size = gc.Slider(1, 1920, 512, step=1, label='output size')
|
284 |
+
border = gc.Slider(
|
285 |
+
1, 50, 0, step=1, label='border to crop from the image before outpainting')
|
286 |
+
seed = gc.Slider(1, 65536, 10, step=1, label='seed')
|
287 |
+
size = gc.Slider(0, 1, .5, step=0.01,
|
288 |
+
label='scale of the image before outpainting')
|
289 |
+
|
290 |
+
out = gc.Image(label="primed image with alpha channel", type='pil')
|
291 |
+
outwithoutalpha = gc.Image(
|
292 |
+
label="primed image without alpha channel", type='pil')
|
293 |
+
mask = gc.Image(label="outpainting mask", type='pil')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
+
maturl = 'https://github.com/fenglinglwb/MAT'
|
296 |
+
gr.Interface(
|
297 |
+
_outpaint,
|
298 |
+
[searchimage, to_size, border, seed, size],
|
299 |
+
[out, outwithoutalpha, mask],
|
300 |
+
title=f"MAT Primer for Stable Diffusion\n\nbased on MAT: Mask-Aware Transformer for Large Hole Image Inpainting\n\n{maturl}",
|
301 |
+
description=f"create an outpainting primer for use in stable diffusion outpainting",
|
302 |
+
analytics_enabled=False,
|
303 |
+
allow_flagging='never',
|
304 |
|
305 |
|
306 |
+
).launch()
|
|
bread.gif
DELETED
Git LFS Details
|
flagscapes.gif
DELETED
Git LFS Details
|
generate_image.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Generate images using pretrained network pickle."""
|
10 |
+
from PIL import Image
|
11 |
+
from cog import BasePredictor, Input, Path
|
12 |
+
from networks.mat import Generator
|
13 |
+
import legacy
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import torch
|
16 |
+
import PIL.Image
|
17 |
+
import numpy as np
|
18 |
+
import dnnlib
|
19 |
+
import click
|
20 |
+
from typing import List, Optional
|
21 |
+
import random
|
22 |
+
import re
|
23 |
+
import os
|
24 |
+
import glob
|
25 |
+
import cv2
|
26 |
+
pyspng = None
|
27 |
+
|
28 |
+
|
29 |
+
def num_range(s: str) -> List[int]:
|
30 |
+
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
|
31 |
+
|
32 |
+
range_re = re.compile(r'^(\d+)-(\d+)$')
|
33 |
+
m = range_re.match(s)
|
34 |
+
if m:
|
35 |
+
return list(range(int(m.group(1)), int(m.group(2))+1))
|
36 |
+
vals = s.split(',')
|
37 |
+
return [int(x) for x in vals]
|
38 |
+
|
39 |
+
|
40 |
+
def copy_params_and_buffers(src_module, dst_module, require_all=False):
|
41 |
+
assert isinstance(src_module, torch.nn.Module)
|
42 |
+
assert isinstance(dst_module, torch.nn.Module)
|
43 |
+
src_tensors = {name: tensor for name,
|
44 |
+
tensor in named_params_and_buffers(src_module)}
|
45 |
+
for name, tensor in named_params_and_buffers(dst_module):
|
46 |
+
assert (name in src_tensors) or (not require_all)
|
47 |
+
if name in src_tensors:
|
48 |
+
tensor.copy_(src_tensors[name].detach()).requires_grad_(
|
49 |
+
tensor.requires_grad)
|
50 |
+
|
51 |
+
|
52 |
+
def params_and_buffers(module):
|
53 |
+
assert isinstance(module, torch.nn.Module)
|
54 |
+
return list(module.parameters()) + list(module.buffers())
|
55 |
+
|
56 |
+
|
57 |
+
def named_params_and_buffers(module):
|
58 |
+
assert isinstance(module, torch.nn.Module)
|
59 |
+
return list(module.named_parameters()) + list(module.named_buffers())
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
class Inpainter:
|
64 |
+
def __init__(self,
|
65 |
+
network_pkl,
|
66 |
+
resolution=512,
|
67 |
+
truncation_psi=1,
|
68 |
+
noise_mode='const',
|
69 |
+
sdevice='cpu'
|
70 |
+
):
|
71 |
+
self.resolution = resolution
|
72 |
+
self.truncation_psi = truncation_psi
|
73 |
+
self.noise_mode = noise_mode
|
74 |
+
print(f'Loading networks from: {network_pkl}')
|
75 |
+
self.device = torch.device(sdevice)
|
76 |
+
with dnnlib.util.open_url(network_pkl) as f:
|
77 |
+
G_saved = legacy.load_network_pkl(f)['G_ema'].to(
|
78 |
+
device).eval().requires_grad_(False) # type: ignore
|
79 |
+
net_res = 512 if resolution > 512 else resolution
|
80 |
+
self.G = Generator(
|
81 |
+
z_dim=512,
|
82 |
+
c_dim=0,
|
83 |
+
w_dim=512,
|
84 |
+
img_resolution=net_res,
|
85 |
+
img_channels=3
|
86 |
+
).to(self.device).eval().requires_grad_(False)
|
87 |
+
copy_params_and_buffers(G_saved, self.G, require_all=True)
|
88 |
+
|
89 |
+
def generate_images2(
|
90 |
+
self,
|
91 |
+
dpath: List[PIL.Image.Image],
|
92 |
+
mpath: List[Optional[PIL.Image.Image]],
|
93 |
+
seed: int = 42,
|
94 |
+
):
|
95 |
+
"""
|
96 |
+
Generate images using pretrained network pickle.
|
97 |
+
"""
|
98 |
+
resolution = self.resolution
|
99 |
+
truncation_psi = self.truncation_psi
|
100 |
+
noise_mode = self.noise_mode
|
101 |
+
# seed = 240 # pick up a random number
|
102 |
+
def seed_all(seed):
|
103 |
+
random.seed(seed)
|
104 |
+
np.random.seed(seed)
|
105 |
+
torch.manual_seed(seed)
|
106 |
+
torch.cuda.manual_seed(seed)
|
107 |
+
if seed is not None:
|
108 |
+
seed_all(seed)
|
109 |
+
|
110 |
+
# no Labels.
|
111 |
+
label = torch.zeros([1, self.G.c_dim], device=self.device)
|
112 |
+
|
113 |
+
def read_image(image):
|
114 |
+
image = np.array(image)
|
115 |
+
if image.ndim == 2:
|
116 |
+
image = image[:, :, np.newaxis] # HW => HWC
|
117 |
+
image = np.repeat(image, 3, axis=2)
|
118 |
+
image = image.transpose(2, 0, 1) # HWC => CHW
|
119 |
+
image = image[:3]
|
120 |
+
return image
|
121 |
+
if resolution != 512:
|
122 |
+
noise_mode = 'random'
|
123 |
+
results = []
|
124 |
+
with torch.no_grad():
|
125 |
+
for i, (ipath, m) in enumerate(zip(dpath, mpath)):
|
126 |
+
if seed is None:
|
127 |
+
seed_all(i)
|
128 |
+
|
129 |
+
image = read_image(ipath)
|
130 |
+
image = (torch.from_numpy(image).float().to(
|
131 |
+
self. device) / 127.5 - 1).unsqueeze(0)
|
132 |
+
|
133 |
+
if m is not None:
|
134 |
+
mask = np.array(m).astype(np.float32) / 255.0
|
135 |
+
mask = torch.from_numpy(mask).float().to(
|
136 |
+
self. device).unsqueeze(0).unsqueeze(0)
|
137 |
+
else:
|
138 |
+
# adjust the masking ratio by using 'hole_range'
|
139 |
+
mask = RandomMask(resolution)
|
140 |
+
mask = torch.from_numpy(
|
141 |
+
mask).float().to(self.device).unsqueeze(0)
|
142 |
+
|
143 |
+
z = torch.from_numpy(np.random.randn(
|
144 |
+
1, self.G.z_dim)).to(self.device)
|
145 |
+
output = self.G(image, mask, z, label,
|
146 |
+
truncation_psi=truncation_psi, noise_mode=noise_mode)
|
147 |
+
output = (output.permute(0, 2, 3, 1) * 127.5 +
|
148 |
+
127.5).round().clamp(0, 255).to(torch.uint8)
|
149 |
+
output = output[0].cpu().numpy()
|
150 |
+
results.append(PIL.Image.fromarray(output, 'RGB'))
|
151 |
+
|
152 |
+
return results
|
153 |
+
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
generate_images() # pylint: disable=no-value-for-parameter
|
157 |
+
|
158 |
+
# ----------------------------------------------------------------------------
|
159 |
+
|
160 |
+
# simple rest api for inference
|
161 |
+
|
162 |
+
|
heineken.gif
DELETED
Git LFS Details
|
hild.gif
DELETED
Git LFS Details
|
models/Places_512_FullData+LAION300k+OPM1200k.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f9ecebfd38f952abd3fde0a74caba64333627a80660f8c14699c1778232231e2
|
3 |
-
size 661315824
|
|
|
|
|
|
|
|
models/Places_512_FullData+LAION300k+OPM300k.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2d2ed6751e2ed8a2120864fd5c1f08a8e926a2f79d5aa91bb35f9cc32869e77f
|
3 |
-
size 661315824
|
|
|
|
|
|
|
|
models/Places_512_FullData+LAION300k.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0230b8b39287e4a1ec4c53a7c724188cf0fe6dab2610bf79cdff3756b8517291
|
3 |
-
size 661315824
|
|
|
|
|
|
|
|
msoffice.gif
DELETED
Git LFS Details
|
op.gif
DELETED
Git LFS Details
|
outpainting_example1.py
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
# %%
|
2 |
-
# an example script of how to do outpainting with the diffusers inpainting pipeline
|
3 |
-
# this is basically just the example from
|
4 |
-
# https://huggingface.co/runwayml/stable-diffusion-inpainting
|
5 |
-
#%
|
6 |
-
from diffusers import StableDiffusionInpaintPipeline
|
7 |
-
|
8 |
-
from PIL import Image
|
9 |
-
import numpy as np
|
10 |
-
import torch
|
11 |
-
|
12 |
-
from diffusers import StableDiffusionInpaintPipeline
|
13 |
-
|
14 |
-
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
15 |
-
"runwayml/stable-diffusion-inpainting",
|
16 |
-
revision="fp16",
|
17 |
-
torch_dtype=torch.float16,
|
18 |
-
)
|
19 |
-
pipe.to("cuda")
|
20 |
-
|
21 |
-
# load the image, extract the mask
|
22 |
-
rgba = Image.open('primed_image_with_alpha_channel.png')
|
23 |
-
mask_image = Image.fromarray(np.array(rgba)[:, :, 3] == 0)
|
24 |
-
|
25 |
-
# run the pipeline
|
26 |
-
prompt = "Face of a yellow cat, high resolution, sitting on a park bench."
|
27 |
-
# image and mask_image should be PIL images.
|
28 |
-
# The mask structure is white for outpainting and black for keeping as is
|
29 |
-
image = pipe(
|
30 |
-
prompt=prompt,
|
31 |
-
image=rgba,
|
32 |
-
mask_image=mask_image,
|
33 |
-
).images[0]
|
34 |
-
image
|
35 |
-
|
36 |
-
# %%
|
37 |
-
# the vae does lossy encoding, we could get better quality if we pasted the original image into our result.
|
38 |
-
# this may yield visible edges
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
outpainting_example2.py
DELETED
@@ -1,197 +0,0 @@
|
|
1 |
-
# %%
|
2 |
-
# an example script of how to do outpainting with diffusers img2img pipeline
|
3 |
-
# should be compatible with any stable diffusion model
|
4 |
-
# (only tested with runwayml/stable-diffusion-v1-5)
|
5 |
-
|
6 |
-
from typing import Callable, List, Optional, Union
|
7 |
-
from PIL import Image
|
8 |
-
import PIL
|
9 |
-
import numpy as np
|
10 |
-
import torch
|
11 |
-
|
12 |
-
from diffusers import StableDiffusionImg2ImgPipeline
|
13 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
14 |
-
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import preprocess
|
15 |
-
|
16 |
-
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
17 |
-
"runwayml/stable-diffusion-v1-5",
|
18 |
-
revision="fp16",
|
19 |
-
torch_dtype=torch.float16,
|
20 |
-
)
|
21 |
-
|
22 |
-
pipe.set_use_memory_efficient_attention_xformers(True)
|
23 |
-
pipe.to("cuda")
|
24 |
-
# %%
|
25 |
-
# load the image, extract the mask
|
26 |
-
rgba = Image.open('primed_image_with_alpha_channel.png')
|
27 |
-
mask_full = np.array(rgba)[:, :, 3] == 0
|
28 |
-
rgb = rgba.convert('RGB')
|
29 |
-
# %%
|
30 |
-
|
31 |
-
# resize/convert the mask to the right size
|
32 |
-
# for 512x512, the mask should be 1x4x64x64
|
33 |
-
hw = np.array(mask_full.shape)
|
34 |
-
h, w = (hw - hw % 32) // 8
|
35 |
-
mask_image = Image.fromarray(mask_full).resize((w, h), Image.NEAREST)
|
36 |
-
mask = (np.array(mask_image) == 0)[None, None]
|
37 |
-
mask = np.concatenate([mask]*4, axis=1)
|
38 |
-
mask = torch.from_numpy(mask).to('cuda')
|
39 |
-
mask.shape
|
40 |
-
|
41 |
-
# %%
|
42 |
-
|
43 |
-
|
44 |
-
@torch.no_grad()
|
45 |
-
def outpaint(
|
46 |
-
self: StableDiffusionImg2ImgPipeline,
|
47 |
-
prompt: Union[str, List[str]] = None,
|
48 |
-
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
49 |
-
strength: float = 0.8,
|
50 |
-
num_inference_steps: Optional[int] = 50,
|
51 |
-
guidance_scale: Optional[float] = 7.5,
|
52 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
53 |
-
num_images_per_prompt: Optional[int] = 1,
|
54 |
-
eta: Optional[float] = 0.0,
|
55 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
56 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
57 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
58 |
-
output_type: Optional[str] = "pil",
|
59 |
-
return_dict: bool = True,
|
60 |
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
61 |
-
callback_steps: Optional[int] = 1,
|
62 |
-
**kwargs,
|
63 |
-
):
|
64 |
-
r"""
|
65 |
-
copy of the original img2img pipeline's __call__()
|
66 |
-
https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
|
67 |
-
|
68 |
-
Changes are marked with <EDIT> and </EDIT>
|
69 |
-
"""
|
70 |
-
# message = "Please use `image` instead of `init_image`."
|
71 |
-
# init_image = deprecate("init_image", "0.14.0", message, take_from=kwargs)
|
72 |
-
# image = init_image or image
|
73 |
-
|
74 |
-
# 1. Check inputs. Raise error if not correct
|
75 |
-
self.check_inputs(prompt, strength, callback_steps,
|
76 |
-
negative_prompt, prompt_embeds, negative_prompt_embeds)
|
77 |
-
|
78 |
-
# 2. Define call parameters
|
79 |
-
if prompt is not None and isinstance(prompt, str):
|
80 |
-
batch_size = 1
|
81 |
-
elif prompt is not None and isinstance(prompt, list):
|
82 |
-
batch_size = len(prompt)
|
83 |
-
else:
|
84 |
-
batch_size = prompt_embeds.shape[0]
|
85 |
-
device = self._execution_device
|
86 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
87 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
88 |
-
# corresponds to doing no classifier free guidance.
|
89 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
90 |
-
|
91 |
-
# 3. Encode input prompt
|
92 |
-
prompt_embeds = self._encode_prompt(
|
93 |
-
prompt,
|
94 |
-
device,
|
95 |
-
num_images_per_prompt,
|
96 |
-
do_classifier_free_guidance,
|
97 |
-
negative_prompt,
|
98 |
-
prompt_embeds=prompt_embeds,
|
99 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
100 |
-
)
|
101 |
-
|
102 |
-
# 4. Preprocess image
|
103 |
-
image = preprocess(image)
|
104 |
-
|
105 |
-
# 5. set timesteps
|
106 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
107 |
-
timesteps, num_inference_steps = self.get_timesteps(
|
108 |
-
num_inference_steps, strength, device)
|
109 |
-
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
110 |
-
|
111 |
-
# 6. Prepare latent variables
|
112 |
-
latents = self.prepare_latents(
|
113 |
-
image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
|
114 |
-
)
|
115 |
-
|
116 |
-
# <EDIT>
|
117 |
-
# store the encoded version of the original image to overwrite
|
118 |
-
# what the UNET generates "underneath" our image on each step
|
119 |
-
encoded_original = (self.vae.config.scaling_factor *
|
120 |
-
self.vae.encode(
|
121 |
-
image.to(latents.device, latents.dtype)
|
122 |
-
).latent_dist.mean)
|
123 |
-
# </EDIT>
|
124 |
-
|
125 |
-
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
126 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
127 |
-
|
128 |
-
# 8. Denoising loop
|
129 |
-
num_warmup_steps = len(timesteps) - \
|
130 |
-
num_inference_steps * self.scheduler.order
|
131 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
132 |
-
for i, t in enumerate(timesteps):
|
133 |
-
# expand the latents if we are doing classifier free guidance
|
134 |
-
latent_model_input = torch.cat(
|
135 |
-
[latents] * 2) if do_classifier_free_guidance else latents
|
136 |
-
latent_model_input = self.scheduler.scale_model_input(
|
137 |
-
latent_model_input, t)
|
138 |
-
|
139 |
-
# predict the noise residual
|
140 |
-
noise_pred = self.unet(latent_model_input, t,
|
141 |
-
encoder_hidden_states=prompt_embeds).sample
|
142 |
-
|
143 |
-
# perform guidance
|
144 |
-
if do_classifier_free_guidance:
|
145 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
146 |
-
noise_pred = noise_pred_uncond + guidance_scale * \
|
147 |
-
(noise_pred_text - noise_pred_uncond)
|
148 |
-
|
149 |
-
# compute the previous noisy sample x_t -> x_t-1
|
150 |
-
latents = self.scheduler.step(
|
151 |
-
noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
152 |
-
|
153 |
-
# <EDIT> paste unmasked regions from the original image
|
154 |
-
noise = torch.randn(
|
155 |
-
encoded_original.shape, generator=generator, device=device)
|
156 |
-
noised_encoded_original = self.scheduler.add_noise(
|
157 |
-
encoded_original, noise, t).to(noise_pred.device, noise_pred.dtype)
|
158 |
-
latents[mask] = noised_encoded_original[mask]
|
159 |
-
# </EDIT>
|
160 |
-
|
161 |
-
# call the callback, if provided
|
162 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
163 |
-
progress_bar.update()
|
164 |
-
if callback is not None and i % callback_steps == 0:
|
165 |
-
callback(i, t, latents)
|
166 |
-
|
167 |
-
# 9. Post-processing
|
168 |
-
image = self.decode_latents(latents)
|
169 |
-
|
170 |
-
# 10. Run safety checker
|
171 |
-
image, has_nsfw_concept = self.run_safety_checker(
|
172 |
-
image, device, prompt_embeds.dtype)
|
173 |
-
|
174 |
-
# 11. Convert to PIL
|
175 |
-
if output_type == "pil":
|
176 |
-
image = self.numpy_to_pil(image)
|
177 |
-
|
178 |
-
if not return_dict:
|
179 |
-
return (image, has_nsfw_concept)
|
180 |
-
|
181 |
-
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
182 |
-
|
183 |
-
|
184 |
-
# %%
|
185 |
-
image = outpaint(
|
186 |
-
pipe,
|
187 |
-
image=rgb,
|
188 |
-
prompt="forest in the style of Tim Hildebrandt",
|
189 |
-
strength=0.5,
|
190 |
-
num_inference_steps=50,
|
191 |
-
guidance_scale=7.5,
|
192 |
-
).images[0]
|
193 |
-
image
|
194 |
-
|
195 |
-
# %%
|
196 |
-
# the vae does lossy encoding, we could get better quality if we pasted the original image into our result.
|
197 |
-
# this may yield visible edges
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
process.gif
DELETED
Git LFS Details
|
walmart.gif
DELETED
Git LFS Details
|