|
# nlp-flashcard-project |
|
|
|
## Todo 2 |
|
|
|
- [ ] Contexts preprocessing |
|
- [ ] Formules enzo eruit filteren |
|
- [ ] Splitsen op zinnen...? |
|
- [ ] Meer language models proberen |
|
- [X] Elasticsearch |
|
- [X] CLI voor vragen beantwoorden |
|
|
|
### Extra dingen |
|
|
|
- [X] Huggingface spaces demo |
|
- [ ] Question generation voor finetuning |
|
- [ ] Language model finetunen |
|
|
|
## Todo voor progress meeting |
|
|
|
- [ ] Data inlezen/Repo klaarmaken |
|
- [ ] Proof of concept met UnifiedQA |
|
- [ ] Standaard QA model met de dataset |
|
- [ ] Papers verzamelen/lezen |
|
- [ ] Eerder werk bekijken, inspiratie opdoen voor research richting |
|
|
|
## Overview |
|
|
|
De meeste QA systemen bestaan uit twee onderdelen: |
|
|
|
- Een retriever. Die haalt adhv de vraag _k_ relevante stukken context op, bv. |
|
met `tf-idf`. |
|
- Een model dat het antwoord genereert. Wat je hier precies gebruikt hangt af |
|
van de manier van question answering: |
|
- Voor **extractive QA** gebruik je een reader; |
|
- Voor **generative QA** gebruik je een generator. |
|
|
|
Beide werken op basis van een language model. |
|
|
|
## Handige info |
|
|
|
- Huggingface QA tutorial: <https://huggingface.co/docs/transformers/tasks/question_answering#finetune-with-tensorflow> |
|
- Overview van open-domain question answering technieken: <https://lilianweng.github.io/posts/2020-10-29-odqa/> |
|
|
|
## Base model |
|
|
|
Tot nu toe alleen een retriever die adhv een vraag de top-k relevante documents |
|
ophaalt. Haalt voor veel vragen wel hoge similarity scores, maar de documents |
|
die die ophaalt zijn meestal niet erg relevant. |
|
|
|
```bash |
|
poetry shell |
|
cd base_model |
|
poetry run python main.py |
|
``` |
|
|
|
### Voorbeeld |
|
|
|
"What is the perplexity of a language model?" |
|
|
|
> Result 1 (score: 74.10): |
|
> Figure 10 .17 A sample alignment between sentences in English and French, with |
|
> sentences extracted from Antoine de Saint-Exupery's Le Petit Prince and a |
|
> hypothetical translation. Sentence alignment takes sentences e 1 , ..., e n , |
|
> and f 1 , ..., f n and finds minimal > sets of sentences that are translations |
|
> of each other, including single sentence mappings like (e 1 ,f 1 ), (e 4 -f 3 |
|
> ), (e 5 -f 4 ), (e 6 -f 6 ) as well as 2-1 alignments (e 2 /e 3 ,f 2 ), (e 7 |
|
> /e 8 -f 7 ), and null alignments (f 5 ). |
|
> |
|
> Result 2 (score: 74.23): |
|
> Character or word overlap-based metrics like chrF (or BLEU, or etc.) are |
|
> mainly used to compare two systems, with the goal of answering questions like: |
|
> did the new algorithm we just invented improve our MT system? To know if the |
|
> difference between the chrF scores of two > MT systems is a significant |
|
> difference, we use the paired bootstrap test, or the similar randomization |
|
> test. |
|
> |
|
> Result 3 (score: 74.43): |
|
> The model thus predicts the class negative for the test sentence. |
|
> |
|
> Result 4 (score: 74.95): |
|
> Translating from languages with extensive pro-drop, like Chinese or Japanese, |
|
> to non-pro-drop languages like English can be difficult since the model must |
|
> somehow identify each zero and recover who or what is being talked about in |
|
> order to insert the proper pronoun. |
|
> |
|
> Result 5 (score: 76.22): |
|
> Similarly, a recent challenge set, the WinoMT dataset (Stanovsky et al., 2019) |
|
> shows that MT systems perform worse when they are asked to translate sentences |
|
> that describe people with non-stereotypical gender roles, like "The doctor |
|
> asked the nurse to help her in the > operation". |
|
|
|
|
|
## Setting up elastic search. |
|
|