Spaces:
Saad0KH
/
Running on Zero

IDM-VTON
update IDM-VTON Demo
938e515
raw
history blame
20.7 kB
// Copyright (c) Facebook, Inc. and its affiliates.
#include "cocoeval.h"
#include <time.h>
#include <algorithm>
#include <cstdint>
#include <numeric>
using namespace pybind11::literals;
namespace detectron2 {
namespace COCOeval {
// Sort detections from highest score to lowest, such that
// detection_instances[detection_sorted_indices[t]] >=
// detection_instances[detection_sorted_indices[t+1]]. Use stable_sort to match
// original COCO API
void SortInstancesByDetectionScore(
const std::vector<InstanceAnnotation>& detection_instances,
std::vector<uint64_t>* detection_sorted_indices) {
detection_sorted_indices->resize(detection_instances.size());
std::iota(
detection_sorted_indices->begin(), detection_sorted_indices->end(), 0);
std::stable_sort(
detection_sorted_indices->begin(),
detection_sorted_indices->end(),
[&detection_instances](size_t j1, size_t j2) {
return detection_instances[j1].score > detection_instances[j2].score;
});
}
// Partition the ground truth objects based on whether or not to ignore them
// based on area
void SortInstancesByIgnore(
const std::array<double, 2>& area_range,
const std::vector<InstanceAnnotation>& ground_truth_instances,
std::vector<uint64_t>* ground_truth_sorted_indices,
std::vector<bool>* ignores) {
ignores->clear();
ignores->reserve(ground_truth_instances.size());
for (auto o : ground_truth_instances) {
ignores->push_back(
o.ignore || o.area < area_range[0] || o.area > area_range[1]);
}
ground_truth_sorted_indices->resize(ground_truth_instances.size());
std::iota(
ground_truth_sorted_indices->begin(),
ground_truth_sorted_indices->end(),
0);
std::stable_sort(
ground_truth_sorted_indices->begin(),
ground_truth_sorted_indices->end(),
[&ignores](size_t j1, size_t j2) {
return (int)(*ignores)[j1] < (int)(*ignores)[j2];
});
}
// For each IOU threshold, greedily match each detected instance to a ground
// truth instance (if possible) and store the results
void MatchDetectionsToGroundTruth(
const std::vector<InstanceAnnotation>& detection_instances,
const std::vector<uint64_t>& detection_sorted_indices,
const std::vector<InstanceAnnotation>& ground_truth_instances,
const std::vector<uint64_t>& ground_truth_sorted_indices,
const std::vector<bool>& ignores,
const std::vector<std::vector<double>>& ious,
const std::vector<double>& iou_thresholds,
const std::array<double, 2>& area_range,
ImageEvaluation* results) {
// Initialize memory to store return data matches and ignore
const int num_iou_thresholds = iou_thresholds.size();
const int num_ground_truth = ground_truth_sorted_indices.size();
const int num_detections = detection_sorted_indices.size();
std::vector<uint64_t> ground_truth_matches(
num_iou_thresholds * num_ground_truth, 0);
std::vector<uint64_t>& detection_matches = results->detection_matches;
std::vector<bool>& detection_ignores = results->detection_ignores;
std::vector<bool>& ground_truth_ignores = results->ground_truth_ignores;
detection_matches.resize(num_iou_thresholds * num_detections, 0);
detection_ignores.resize(num_iou_thresholds * num_detections, false);
ground_truth_ignores.resize(num_ground_truth);
for (auto g = 0; g < num_ground_truth; ++g) {
ground_truth_ignores[g] = ignores[ground_truth_sorted_indices[g]];
}
for (auto t = 0; t < num_iou_thresholds; ++t) {
for (auto d = 0; d < num_detections; ++d) {
// information about best match so far (match=-1 -> unmatched)
double best_iou = std::min(iou_thresholds[t], 1 - 1e-10);
int match = -1;
for (auto g = 0; g < num_ground_truth; ++g) {
// if this ground truth instance is already matched and not a
// crowd, it cannot be matched to another detection
if (ground_truth_matches[t * num_ground_truth + g] > 0 &&
!ground_truth_instances[ground_truth_sorted_indices[g]].is_crowd) {
continue;
}
// if detected instance matched to a regular ground truth
// instance, we can break on the first ground truth instance
// tagged as ignore (because they are sorted by the ignore tag)
if (match >= 0 && !ground_truth_ignores[match] &&
ground_truth_ignores[g]) {
break;
}
// if IOU overlap is the best so far, store the match appropriately
if (ious[d][ground_truth_sorted_indices[g]] >= best_iou) {
best_iou = ious[d][ground_truth_sorted_indices[g]];
match = g;
}
}
// if match was made, store id of match for both detection and
// ground truth
if (match >= 0) {
detection_ignores[t * num_detections + d] = ground_truth_ignores[match];
detection_matches[t * num_detections + d] =
ground_truth_instances[ground_truth_sorted_indices[match]].id;
ground_truth_matches[t * num_ground_truth + match] =
detection_instances[detection_sorted_indices[d]].id;
}
// set unmatched detections outside of area range to ignore
const InstanceAnnotation& detection =
detection_instances[detection_sorted_indices[d]];
detection_ignores[t * num_detections + d] =
detection_ignores[t * num_detections + d] ||
(detection_matches[t * num_detections + d] == 0 &&
(detection.area < area_range[0] || detection.area > area_range[1]));
}
}
// store detection score results
results->detection_scores.resize(detection_sorted_indices.size());
for (size_t d = 0; d < detection_sorted_indices.size(); ++d) {
results->detection_scores[d] =
detection_instances[detection_sorted_indices[d]].score;
}
}
std::vector<ImageEvaluation> EvaluateImages(
const std::vector<std::array<double, 2>>& area_ranges,
int max_detections,
const std::vector<double>& iou_thresholds,
const ImageCategoryInstances<std::vector<double>>& image_category_ious,
const ImageCategoryInstances<InstanceAnnotation>&
image_category_ground_truth_instances,
const ImageCategoryInstances<InstanceAnnotation>&
image_category_detection_instances) {
const int num_area_ranges = area_ranges.size();
const int num_images = image_category_ground_truth_instances.size();
const int num_categories =
image_category_ious.size() > 0 ? image_category_ious[0].size() : 0;
std::vector<uint64_t> detection_sorted_indices;
std::vector<uint64_t> ground_truth_sorted_indices;
std::vector<bool> ignores;
std::vector<ImageEvaluation> results_all(
num_images * num_area_ranges * num_categories);
// Store results for each image, category, and area range combination. Results
// for each IOU threshold are packed into the same ImageEvaluation object
for (auto i = 0; i < num_images; ++i) {
for (auto c = 0; c < num_categories; ++c) {
const std::vector<InstanceAnnotation>& ground_truth_instances =
image_category_ground_truth_instances[i][c];
const std::vector<InstanceAnnotation>& detection_instances =
image_category_detection_instances[i][c];
SortInstancesByDetectionScore(
detection_instances, &detection_sorted_indices);
if ((int)detection_sorted_indices.size() > max_detections) {
detection_sorted_indices.resize(max_detections);
}
for (size_t a = 0; a < area_ranges.size(); ++a) {
SortInstancesByIgnore(
area_ranges[a],
ground_truth_instances,
&ground_truth_sorted_indices,
&ignores);
MatchDetectionsToGroundTruth(
detection_instances,
detection_sorted_indices,
ground_truth_instances,
ground_truth_sorted_indices,
ignores,
image_category_ious[i][c],
iou_thresholds,
area_ranges[a],
&results_all
[c * num_area_ranges * num_images + a * num_images + i]);
}
}
}
return results_all;
}
// Convert a python list to a vector
template <typename T>
std::vector<T> list_to_vec(const py::list& l) {
std::vector<T> v(py::len(l));
for (int i = 0; i < (int)py::len(l); ++i) {
v[i] = l[i].cast<T>();
}
return v;
}
// Helper function to Accumulate()
// Considers the evaluation results applicable to a particular category, area
// range, and max_detections parameter setting, which begin at
// evaluations[evaluation_index]. Extracts a sorted list of length n of all
// applicable detection instances concatenated across all images in the dataset,
// which are represented by the outputs evaluation_indices, detection_scores,
// image_detection_indices, and detection_sorted_indices--all of which are
// length n. evaluation_indices[i] stores the applicable index into
// evaluations[] for instance i, which has detection score detection_score[i],
// and is the image_detection_indices[i]'th of the list of detections
// for the image containing i. detection_sorted_indices[] defines a sorted
// permutation of the 3 other outputs
int BuildSortedDetectionList(
const std::vector<ImageEvaluation>& evaluations,
const int64_t evaluation_index,
const int64_t num_images,
const int max_detections,
std::vector<uint64_t>* evaluation_indices,
std::vector<double>* detection_scores,
std::vector<uint64_t>* detection_sorted_indices,
std::vector<uint64_t>* image_detection_indices) {
assert(evaluations.size() >= evaluation_index + num_images);
// Extract a list of object instances of the applicable category, area
// range, and max detections requirements such that they can be sorted
image_detection_indices->clear();
evaluation_indices->clear();
detection_scores->clear();
image_detection_indices->reserve(num_images * max_detections);
evaluation_indices->reserve(num_images * max_detections);
detection_scores->reserve(num_images * max_detections);
int num_valid_ground_truth = 0;
for (auto i = 0; i < num_images; ++i) {
const ImageEvaluation& evaluation = evaluations[evaluation_index + i];
for (int d = 0;
d < (int)evaluation.detection_scores.size() && d < max_detections;
++d) { // detected instances
evaluation_indices->push_back(evaluation_index + i);
image_detection_indices->push_back(d);
detection_scores->push_back(evaluation.detection_scores[d]);
}
for (auto ground_truth_ignore : evaluation.ground_truth_ignores) {
if (!ground_truth_ignore) {
++num_valid_ground_truth;
}
}
}
// Sort detections by decreasing score, using stable sort to match
// python implementation
detection_sorted_indices->resize(detection_scores->size());
std::iota(
detection_sorted_indices->begin(), detection_sorted_indices->end(), 0);
std::stable_sort(
detection_sorted_indices->begin(),
detection_sorted_indices->end(),
[&detection_scores](size_t j1, size_t j2) {
return (*detection_scores)[j1] > (*detection_scores)[j2];
});
return num_valid_ground_truth;
}
// Helper function to Accumulate()
// Compute a precision recall curve given a sorted list of detected instances
// encoded in evaluations, evaluation_indices, detection_scores,
// detection_sorted_indices, image_detection_indices (see
// BuildSortedDetectionList()). Using vectors precisions and recalls
// and temporary storage, output the results into precisions_out, recalls_out,
// and scores_out, which are large buffers containing many precion/recall curves
// for all possible parameter settings, with precisions_out_index and
// recalls_out_index defining the applicable indices to store results.
void ComputePrecisionRecallCurve(
const int64_t precisions_out_index,
const int64_t precisions_out_stride,
const int64_t recalls_out_index,
const std::vector<double>& recall_thresholds,
const int iou_threshold_index,
const int num_iou_thresholds,
const int num_valid_ground_truth,
const std::vector<ImageEvaluation>& evaluations,
const std::vector<uint64_t>& evaluation_indices,
const std::vector<double>& detection_scores,
const std::vector<uint64_t>& detection_sorted_indices,
const std::vector<uint64_t>& image_detection_indices,
std::vector<double>* precisions,
std::vector<double>* recalls,
std::vector<double>* precisions_out,
std::vector<double>* scores_out,
std::vector<double>* recalls_out) {
assert(recalls_out->size() > recalls_out_index);
// Compute precision/recall for each instance in the sorted list of detections
int64_t true_positives_sum = 0, false_positives_sum = 0;
precisions->clear();
recalls->clear();
precisions->reserve(detection_sorted_indices.size());
recalls->reserve(detection_sorted_indices.size());
assert(!evaluations.empty() || detection_sorted_indices.empty());
for (auto detection_sorted_index : detection_sorted_indices) {
const ImageEvaluation& evaluation =
evaluations[evaluation_indices[detection_sorted_index]];
const auto num_detections =
evaluation.detection_matches.size() / num_iou_thresholds;
const auto detection_index = iou_threshold_index * num_detections +
image_detection_indices[detection_sorted_index];
assert(evaluation.detection_matches.size() > detection_index);
assert(evaluation.detection_ignores.size() > detection_index);
const int64_t detection_match =
evaluation.detection_matches[detection_index];
const bool detection_ignores =
evaluation.detection_ignores[detection_index];
const auto true_positive = detection_match > 0 && !detection_ignores;
const auto false_positive = detection_match == 0 && !detection_ignores;
if (true_positive) {
++true_positives_sum;
}
if (false_positive) {
++false_positives_sum;
}
const double recall =
static_cast<double>(true_positives_sum) / num_valid_ground_truth;
recalls->push_back(recall);
const int64_t num_valid_detections =
true_positives_sum + false_positives_sum;
const double precision = num_valid_detections > 0
? static_cast<double>(true_positives_sum) / num_valid_detections
: 0.0;
precisions->push_back(precision);
}
(*recalls_out)[recalls_out_index] = !recalls->empty() ? recalls->back() : 0;
for (int64_t i = static_cast<int64_t>(precisions->size()) - 1; i > 0; --i) {
if ((*precisions)[i] > (*precisions)[i - 1]) {
(*precisions)[i - 1] = (*precisions)[i];
}
}
// Sample the per instance precision/recall list at each recall threshold
for (size_t r = 0; r < recall_thresholds.size(); ++r) {
// first index in recalls >= recall_thresholds[r]
std::vector<double>::iterator low = std::lower_bound(
recalls->begin(), recalls->end(), recall_thresholds[r]);
size_t precisions_index = low - recalls->begin();
const auto results_ind = precisions_out_index + r * precisions_out_stride;
assert(results_ind < precisions_out->size());
assert(results_ind < scores_out->size());
if (precisions_index < precisions->size()) {
(*precisions_out)[results_ind] = (*precisions)[precisions_index];
(*scores_out)[results_ind] =
detection_scores[detection_sorted_indices[precisions_index]];
} else {
(*precisions_out)[results_ind] = 0;
(*scores_out)[results_ind] = 0;
}
}
}
py::dict Accumulate(
const py::object& params,
const std::vector<ImageEvaluation>& evaluations) {
const std::vector<double> recall_thresholds =
list_to_vec<double>(params.attr("recThrs"));
const std::vector<int> max_detections =
list_to_vec<int>(params.attr("maxDets"));
const int num_iou_thresholds = py::len(params.attr("iouThrs"));
const int num_recall_thresholds = py::len(params.attr("recThrs"));
const int num_categories = params.attr("useCats").cast<int>() == 1
? py::len(params.attr("catIds"))
: 1;
const int num_area_ranges = py::len(params.attr("areaRng"));
const int num_max_detections = py::len(params.attr("maxDets"));
const int num_images = py::len(params.attr("imgIds"));
std::vector<double> precisions_out(
num_iou_thresholds * num_recall_thresholds * num_categories *
num_area_ranges * num_max_detections,
-1);
std::vector<double> recalls_out(
num_iou_thresholds * num_categories * num_area_ranges *
num_max_detections,
-1);
std::vector<double> scores_out(
num_iou_thresholds * num_recall_thresholds * num_categories *
num_area_ranges * num_max_detections,
-1);
// Consider the list of all detected instances in the entire dataset in one
// large list. evaluation_indices, detection_scores,
// image_detection_indices, and detection_sorted_indices all have the same
// length as this list, such that each entry corresponds to one detected
// instance
std::vector<uint64_t> evaluation_indices; // indices into evaluations[]
std::vector<double> detection_scores; // detection scores of each instance
std::vector<uint64_t> detection_sorted_indices; // sorted indices of all
// instances in the dataset
std::vector<uint64_t>
image_detection_indices; // indices into the list of detected instances in
// the same image as each instance
std::vector<double> precisions, recalls;
for (auto c = 0; c < num_categories; ++c) {
for (auto a = 0; a < num_area_ranges; ++a) {
for (auto m = 0; m < num_max_detections; ++m) {
// The COCO PythonAPI assumes evaluations[] (the return value of
// COCOeval::EvaluateImages() is one long list storing results for each
// combination of category, area range, and image id, with categories in
// the outermost loop and images in the innermost loop.
const int64_t evaluations_index =
c * num_area_ranges * num_images + a * num_images;
int num_valid_ground_truth = BuildSortedDetectionList(
evaluations,
evaluations_index,
num_images,
max_detections[m],
&evaluation_indices,
&detection_scores,
&detection_sorted_indices,
&image_detection_indices);
if (num_valid_ground_truth == 0) {
continue;
}
for (auto t = 0; t < num_iou_thresholds; ++t) {
// recalls_out is a flattened vectors representing a
// num_iou_thresholds X num_categories X num_area_ranges X
// num_max_detections matrix
const int64_t recalls_out_index =
t * num_categories * num_area_ranges * num_max_detections +
c * num_area_ranges * num_max_detections +
a * num_max_detections + m;
// precisions_out and scores_out are flattened vectors
// representing a num_iou_thresholds X num_recall_thresholds X
// num_categories X num_area_ranges X num_max_detections matrix
const int64_t precisions_out_stride =
num_categories * num_area_ranges * num_max_detections;
const int64_t precisions_out_index = t * num_recall_thresholds *
num_categories * num_area_ranges * num_max_detections +
c * num_area_ranges * num_max_detections +
a * num_max_detections + m;
ComputePrecisionRecallCurve(
precisions_out_index,
precisions_out_stride,
recalls_out_index,
recall_thresholds,
t,
num_iou_thresholds,
num_valid_ground_truth,
evaluations,
evaluation_indices,
detection_scores,
detection_sorted_indices,
image_detection_indices,
&precisions,
&recalls,
&precisions_out,
&scores_out,
&recalls_out);
}
}
}
}
time_t rawtime;
struct tm local_time;
std::array<char, 200> buffer;
time(&rawtime);
#ifdef _WIN32
localtime_s(&local_time, &rawtime);
#else
localtime_r(&rawtime, &local_time);
#endif
strftime(
buffer.data(), 200, "%Y-%m-%d %H:%num_max_detections:%S", &local_time);
return py::dict(
"params"_a = params,
"counts"_a = std::vector<int64_t>(
{num_iou_thresholds,
num_recall_thresholds,
num_categories,
num_area_ranges,
num_max_detections}),
"date"_a = buffer,
"precision"_a = precisions_out,
"recall"_a = recalls_out,
"scores"_a = scores_out);
}
} // namespace COCOeval
} // namespace detectron2