Spaces:
Running
on
Zero
Running
on
Zero
Rename evoukiyoe_v1.py and update app.py
#1
by
yuki-imajuku
- opened
- README.md +4 -4
- app.py +10 -26
- evo_ukiyoe_v1.py +3 -22
- requirements.txt +8 -7
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
-
title: Evo
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Evo Ukiyoe
|
3 |
+
emoji: 🏆
|
4 |
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.37.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,21 +1,16 @@
|
|
1 |
import random
|
2 |
|
3 |
from PIL import Image
|
4 |
-
from diffusers import EulerDiscreteScheduler
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import spaces
|
8 |
import torch
|
9 |
|
10 |
-
# torch._inductor.config.conv_1x1_as_mm = True
|
11 |
-
# torch._inductor.config.coordinate_descent_tuning = True
|
12 |
-
# torch._inductor.config.epilogue_fusion = False
|
13 |
-
# torch._inductor.config.coordinate_descent_check_all_directions = True
|
14 |
from evo_ukiyoe_v1 import load_evo_ukiyoe
|
15 |
|
16 |
|
17 |
DESCRIPTION = """# 🐟 Evo-Ukiyoe
|
18 |
-
🤗 [モデル一覧](https://huggingface.co/SakanaAI) | 📝 [ブログ](https://sakana.ai/
|
19 |
|
20 |
[Evo-Ukiyoe](https://huggingface.co/SakanaAI/Evo-Ukiyoe-v1)は[Sakana AI](https://sakana.ai/)が教育目的で開発した浮世絵に特化した画像生成モデルです。
|
21 |
入力した日本語プロンプトに沿った浮世絵風の画像を生成することができます。より詳しくは、上記のブログをご参照ください。
|
@@ -51,16 +46,7 @@ if SAFETY_CHECKER:
|
|
51 |
return images, has_nsfw_concepts
|
52 |
|
53 |
|
54 |
-
pipe = load_evo_ukiyoe(device)
|
55 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(
|
56 |
-
pipe.scheduler.config, use_karras_sigmas=True,
|
57 |
-
)
|
58 |
-
pipe.to(device=device, dtype=torch.float16)
|
59 |
-
# pipe.unet.to(memory_format=torch.channels_last)
|
60 |
-
# pipe.vae.to(memory_format=torch.channels_last)
|
61 |
-
# # Compile the UNet and VAE.
|
62 |
-
# pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True)
|
63 |
-
# pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
|
64 |
|
65 |
|
66 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
@@ -73,21 +59,21 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
73 |
@torch.inference_mode()
|
74 |
def generate(
|
75 |
prompt: str,
|
76 |
-
negative_prompt: str = "",
|
77 |
seed: int = 0,
|
78 |
randomize_seed: bool = False,
|
79 |
progress=gr.Progress(track_tqdm=True),
|
80 |
):
|
|
|
81 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
82 |
generator = torch.Generator().manual_seed(seed)
|
83 |
|
84 |
images = pipe(
|
85 |
-
prompt=prompt + "
|
86 |
-
negative_prompt=
|
87 |
width=1024,
|
88 |
height=1024,
|
89 |
guidance_scale=8.0,
|
90 |
-
num_inference_steps=
|
91 |
generator=generator,
|
92 |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
|
93 |
output_type="pil",
|
@@ -102,9 +88,9 @@ def generate(
|
|
102 |
|
103 |
|
104 |
examples = [
|
105 |
-
"
|
106 |
-
"
|
107 |
-
"
|
108 |
]
|
109 |
|
110 |
css = """
|
@@ -119,10 +105,9 @@ with gr.Blocks(css=css) as demo:
|
|
119 |
submit = gr.Button(scale=0)
|
120 |
result = gr.Image(label="Evo-Ukiyoeからの生成結果", type="pil", show_label=False)
|
121 |
with gr.Accordion("詳細設定", open=False):
|
122 |
-
negative_prompt = gr.Textbox(placeholder="日本語でネガティブプロンプトを入力してください。(空白可)", show_label=False)
|
123 |
seed = gr.Slider(label="シード値", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
124 |
randomize_seed = gr.Checkbox(label="ランダムにシード値を決定", value=True)
|
125 |
-
gr.Examples(examples=examples, inputs=
|
126 |
gr.on(
|
127 |
triggers=[
|
128 |
prompt.submit,
|
@@ -131,7 +116,6 @@ with gr.Blocks(css=css) as demo:
|
|
131 |
fn=generate,
|
132 |
inputs=[
|
133 |
prompt,
|
134 |
-
negative_prompt,
|
135 |
seed,
|
136 |
randomize_seed,
|
137 |
],
|
|
|
1 |
import random
|
2 |
|
3 |
from PIL import Image
|
|
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import spaces
|
7 |
import torch
|
8 |
|
|
|
|
|
|
|
|
|
9 |
from evo_ukiyoe_v1 import load_evo_ukiyoe
|
10 |
|
11 |
|
12 |
DESCRIPTION = """# 🐟 Evo-Ukiyoe
|
13 |
+
🤗 [モデル一覧](https://huggingface.co/SakanaAI) | 📚 [技術レポート](https://arxiv.org/abs/2403.13187) | 📝 [ブログ](https://sakana.ai/evosdxl-jp/) | 🐦 [Twitter](https://twitter.com/SakanaAILabs)
|
14 |
|
15 |
[Evo-Ukiyoe](https://huggingface.co/SakanaAI/Evo-Ukiyoe-v1)は[Sakana AI](https://sakana.ai/)が教育目的で開発した浮世絵に特化した画像生成モデルです。
|
16 |
入力した日本語プロンプトに沿った浮世絵風の画像を生成することができます。より詳しくは、上記のブログをご参照ください。
|
|
|
46 |
return images, has_nsfw_concepts
|
47 |
|
48 |
|
49 |
+
pipe = load_evo_ukiyoe("cpu").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
|
52 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
|
59 |
@torch.inference_mode()
|
60 |
def generate(
|
61 |
prompt: str,
|
|
|
62 |
seed: int = 0,
|
63 |
randomize_seed: bool = False,
|
64 |
progress=gr.Progress(track_tqdm=True),
|
65 |
):
|
66 |
+
pipe.to(device)
|
67 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
68 |
generator = torch.Generator().manual_seed(seed)
|
69 |
|
70 |
images = pipe(
|
71 |
+
prompt=prompt + "最高品質の輻の浮世絵。",
|
72 |
+
negative_prompt="",
|
73 |
width=1024,
|
74 |
height=1024,
|
75 |
guidance_scale=8.0,
|
76 |
+
num_inference_steps=50,
|
77 |
generator=generator,
|
78 |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
|
79 |
output_type="pil",
|
|
|
88 |
|
89 |
|
90 |
examples = [
|
91 |
+
["鶴が庭に立っている。雪が降っている。"],
|
92 |
+
["富士山、桜の木、川と人々の風景。"],
|
93 |
+
["熊が本を読んでいる。"],
|
94 |
]
|
95 |
|
96 |
css = """
|
|
|
105 |
submit = gr.Button(scale=0)
|
106 |
result = gr.Image(label="Evo-Ukiyoeからの生成結果", type="pil", show_label=False)
|
107 |
with gr.Accordion("詳細設定", open=False):
|
|
|
108 |
seed = gr.Slider(label="シード値", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
109 |
randomize_seed = gr.Checkbox(label="ランダムにシード値を決定", value=True)
|
110 |
+
gr.Examples(examples=examples, inputs=prompt, outputs=[result, seed], fn=generate)
|
111 |
gr.on(
|
112 |
triggers=[
|
113 |
prompt.submit,
|
|
|
116 |
fn=generate,
|
117 |
inputs=[
|
118 |
prompt,
|
|
|
119 |
seed,
|
120 |
randomize_seed,
|
121 |
],
|
evo_ukiyoe_v1.py
CHANGED
@@ -12,8 +12,7 @@ import torch
|
|
12 |
from tqdm import tqdm
|
13 |
from transformers import AutoTokenizer, CLIPTextModelWithProjection
|
14 |
|
15 |
-
|
16 |
-
# Base models
|
17 |
SDXL_REPO = "stabilityai/stable-diffusion-xl-base-1.0"
|
18 |
DPO_REPO = "mhdang/dpo-sdxl-text2image-v1"
|
19 |
JN_REPO = "RunDiffusion/Juggernaut-XL-v9"
|
@@ -117,7 +116,6 @@ def load_evo_ukiyoe(device="cuda") -> StableDiffusionXLPipeline:
|
|
117 |
)
|
118 |
jn_weights = split_conv_attn(load_from_pretrained(JN_REPO, device=device))
|
119 |
jsdxl_weights = split_conv_attn(load_from_pretrained(JSDXL_REPO, device=device))
|
120 |
-
|
121 |
# Merge base models
|
122 |
tensors = [sdxl_weights, dpo_weights, jn_weights, jsdxl_weights]
|
123 |
new_conv = merge_models(
|
@@ -138,14 +136,11 @@ def load_evo_ukiyoe(device="cuda") -> StableDiffusionXLPipeline:
|
|
138 |
0.2198623756106564,
|
139 |
],
|
140 |
)
|
141 |
-
|
142 |
-
# Delete no longer needed variables to free
|
143 |
del sdxl_weights, dpo_weights, jn_weights, jsdxl_weights
|
144 |
gc.collect()
|
145 |
if "cuda" in device:
|
146 |
torch.cuda.empty_cache()
|
147 |
|
148 |
-
# Instantiate UNet
|
149 |
unet_config = UNet2DConditionModel.load_config(SDXL_REPO, subfolder="unet")
|
150 |
unet = UNet2DConditionModel.from_config(unet_config).to(device=device)
|
151 |
unet.load_state_dict({**new_conv, **new_attn})
|
@@ -167,23 +162,9 @@ def load_evo_ukiyoe(device="cuda") -> StableDiffusionXLPipeline:
|
|
167 |
torch_dtype=torch.float16,
|
168 |
variant="fp16",
|
169 |
)
|
|
|
|
|
170 |
# Load Evo-Ukiyoe weights
|
171 |
pipe.load_lora_weights(UKIYOE_REPO)
|
172 |
pipe.fuse_lora(lora_scale=1.0)
|
173 |
-
pipe = pipe.to(device=torch.device(device), dtype=torch.float16)
|
174 |
-
|
175 |
return pipe
|
176 |
-
|
177 |
-
|
178 |
-
if __name__ == "__main__":
|
179 |
-
pipe = load_evo_ukiyoe()
|
180 |
-
images = pipe(
|
181 |
-
prompt="着物を着ている猫が庭でお茶を飲んでいる。最高品質の輻の浮世絵。超詳細。",
|
182 |
-
negative_prompt="",
|
183 |
-
guidance_scale=8.0,
|
184 |
-
num_inference_steps=50,
|
185 |
-
generator=torch.Generator().manual_seed(0),
|
186 |
-
num_images_per_prompt=1,
|
187 |
-
output_type="pil",
|
188 |
-
).images
|
189 |
-
images[0].save("out.png")
|
|
|
12 |
from tqdm import tqdm
|
13 |
from transformers import AutoTokenizer, CLIPTextModelWithProjection
|
14 |
|
15 |
+
# Base models (fine-tuned from SDXL-1.0)
|
|
|
16 |
SDXL_REPO = "stabilityai/stable-diffusion-xl-base-1.0"
|
17 |
DPO_REPO = "mhdang/dpo-sdxl-text2image-v1"
|
18 |
JN_REPO = "RunDiffusion/Juggernaut-XL-v9"
|
|
|
116 |
)
|
117 |
jn_weights = split_conv_attn(load_from_pretrained(JN_REPO, device=device))
|
118 |
jsdxl_weights = split_conv_attn(load_from_pretrained(JSDXL_REPO, device=device))
|
|
|
119 |
# Merge base models
|
120 |
tensors = [sdxl_weights, dpo_weights, jn_weights, jsdxl_weights]
|
121 |
new_conv = merge_models(
|
|
|
136 |
0.2198623756106564,
|
137 |
],
|
138 |
)
|
|
|
|
|
139 |
del sdxl_weights, dpo_weights, jn_weights, jsdxl_weights
|
140 |
gc.collect()
|
141 |
if "cuda" in device:
|
142 |
torch.cuda.empty_cache()
|
143 |
|
|
|
144 |
unet_config = UNet2DConditionModel.load_config(SDXL_REPO, subfolder="unet")
|
145 |
unet = UNet2DConditionModel.from_config(unet_config).to(device=device)
|
146 |
unet.load_state_dict({**new_conv, **new_attn})
|
|
|
162 |
torch_dtype=torch.float16,
|
163 |
variant="fp16",
|
164 |
)
|
165 |
+
pipe = pipe.to(device, dtype=torch.float16)
|
166 |
+
|
167 |
# Load Evo-Ukiyoe weights
|
168 |
pipe.load_lora_weights(UKIYOE_REPO)
|
169 |
pipe.fuse_lora(lora_scale=1.0)
|
|
|
|
|
170 |
return pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
-
|
2 |
-
|
|
|
3 |
|
4 |
-
accelerate==0.
|
5 |
-
|
6 |
-
|
|
|
7 |
sentencepiece==0.2.0
|
8 |
-
transformers==4.42.3
|
9 |
-
peft==0.11.1
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
2 |
+
torch==2.3.1+cu121
|
3 |
+
torchvision==0.18.1+cu121
|
4 |
|
5 |
+
accelerate==0.31.0
|
6 |
+
controlnet-aux==0.0.9
|
7 |
+
diffusers==0.26.0
|
8 |
+
gradio==4.37.2
|
9 |
sentencepiece==0.2.0
|
10 |
+
transformers==4.42.3
|
|