|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device) |
|
greek_translation_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-el") |
|
|
|
|
|
model_id = "microsoft/speecht5_tts" |
|
|
|
model = SpeechT5ForTextToSpeech.from_pretrained(model_id) |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0) |
|
|
|
processor = SpeechT5Processor.from_pretrained(model_id) |
|
|
|
model_id_greek = "Sandiago21/speecht5_finetuned_google_fleurs_greek" |
|
model_greek = SpeechT5ForTextToSpeech.from_pretrained(model_id_greek) |
|
processor_greek = SpeechT5Processor.from_pretrained(model_id_greek) |
|
|
|
replacements = [ |
|
("á", "a"), |
|
("â", "a"), |
|
("ã", "a"), |
|
("í", "i"), |
|
("á", "a"), |
|
("í", "i"), |
|
("ñ", "n"), |
|
("ó", "o"), |
|
("ú", "u"), |
|
("ü", "u"), |
|
("á", "a"), |
|
("ç", "c"), |
|
("è", "e"), |
|
("ì", "i"), |
|
("í", "i"), |
|
("ò", "o"), |
|
("ó", "o"), |
|
("ù", "u"), |
|
("ú", "u"), |
|
("š", "s"), |
|
("ï", "i"), |
|
("à", "a"), |
|
("â", "a"), |
|
("ç", "c"), |
|
("è", "e"), |
|
("ë", "e"), |
|
("î", "i"), |
|
("ï", "i"), |
|
("ô", "o"), |
|
("ù", "u"), |
|
("û", "u"), |
|
("ü", "u"), |
|
("ου", "u"), |
|
("αυ", "af"), |
|
("ευ", "ef"), |
|
("ει", "i"), |
|
("οι", "i"), |
|
("αι", "e"), |
|
("ού", "u"), |
|
("εί", "i"), |
|
("οί", "i"), |
|
("αί", "e"), |
|
("Ά", "A"), |
|
("Έ", "E"), |
|
("Ή", "H"), |
|
("Ί", "I"), |
|
("Ό", "O"), |
|
("Ύ", "Y"), |
|
("Ώ", "O"), |
|
("ΐ", "i"), |
|
("Α", "A"), |
|
("Β", "B"), |
|
("Γ", "G"), |
|
("Δ", "L"), |
|
("Ε", "Ε"), |
|
("Ζ", "Z"), |
|
("Η", "I"), |
|
("Θ", "Th"), |
|
("Ι", "I"), |
|
("Κ", "K"), |
|
("Λ", "L"), |
|
("Μ", "M"), |
|
("Ν", "N"), |
|
("Ξ", "Ks"), |
|
("Ο", "O"), |
|
("Π", "P"), |
|
("Ρ", "R"), |
|
("Σ", "S"), |
|
("Τ", "T"), |
|
("Υ", "Y"), |
|
("Φ", "F"), |
|
("Χ", "X"), |
|
("Ω", "O"), |
|
("ά", "a"), |
|
("έ", "e"), |
|
("ή", "i"), |
|
("ί", "i"), |
|
("α", "a"), |
|
("β", "v"), |
|
("γ", "g"), |
|
("δ", "d"), |
|
("ε", "e"), |
|
("ζ", "z"), |
|
("η", "i"), |
|
("θ", "th"), |
|
("ι", "i"), |
|
("κ", "k"), |
|
("λ", "l"), |
|
("μ", "m"), |
|
("ν", "n"), |
|
("ξ", "ks"), |
|
("ο", "o"), |
|
("π", "p"), |
|
("ρ", "r"), |
|
("ς", "s"), |
|
("σ", "s"), |
|
("τ", "t"), |
|
("υ", "i"), |
|
("φ", "f"), |
|
("χ", "h"), |
|
("ψ", "ps"), |
|
("ω", "o"), |
|
("ϊ", "i"), |
|
("ϋ", "i"), |
|
("ό", "o"), |
|
("ύ", "i"), |
|
("ώ", "o"), |
|
("í", "i"), |
|
("õ", "o"), |
|
("Ε", "E"), |
|
("Ψ", "Ps"), |
|
] |
|
|
|
def cleanup_text(text): |
|
for src, dst in replacements: |
|
text = text.replace(src, dst) |
|
return text |
|
|
|
|
|
def synthesize_speech(text): |
|
text = cleanup_text(text) |
|
inputs = processor(text=text, return_tensors="pt") |
|
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) |
|
|
|
return gr.Audio.update(value=(16000, speech.cpu().numpy())) |
|
|
|
|
|
def translate_to_english(audio): |
|
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "english"}) |
|
return outputs["text"] |
|
|
|
|
|
def synthesise_from_english(text): |
|
text = cleanup_text(text) |
|
inputs = processor(text=text, return_tensors="pt") |
|
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) |
|
return speech.cpu().numpy() |
|
|
|
|
|
def translate_from_english_to_greek(text): |
|
return greek_translation_pipe(text)[0]["translation_text"] |
|
|
|
|
|
def synthesise_from_greek(text): |
|
text = cleanup_text(text) |
|
inputs = processor_greek(text=text, return_tensors="pt") |
|
speech = model_greek.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) |
|
return speech.cpu() |
|
|
|
|
|
def speech_to_speech_translation(audio): |
|
translated_text = translate_to_english(audio) |
|
translated_text = translate_from_english_to_greek(translated_text) |
|
|
|
|
|
synthesised_speech = synthesise_from_greek(translated_text) |
|
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) |
|
return ((16000, synthesised_speech), translated_text) |
|
|
|
|
|
title = "Cascaded STST" |
|
description = """ |
|
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Greek. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_google_fleurs_greek](https://huggingface.co/Sandiago21/speecht5_finetuned_google_fleurs_greek) checkpoint for text-to-speech, which is based on Microsoft's |
|
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Greek Audio dataset: |
|
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") |
|
""" |
|
|
|
demo = gr.Blocks() |
|
|
|
mic_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(source="microphone", type="filepath"), |
|
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()], |
|
title=title, |
|
description=description, |
|
) |
|
|
|
file_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(source="upload", type="filepath"), |
|
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()], |
|
examples=[["./example.wav"]], |
|
title=title, |
|
description=description, |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) |
|
|
|
demo.launch() |
|
|