Video-Search / app.py
Diangle's picture
Update app.py
c1dbdfa
raw
history blame
5.8 kB
import gradio as gr
import os
import numpy as np
import pandas as pd
from IPython import display
import faiss
import torch
from transformers import CLIPTokenizer, CLIPTextModelWithProjection
HTML="""
<!DOCTYPE html>
<html>
<style>
.container {
align-items: center;
justify-content: center;
}
img {
max-width: 10%;
max-height:10%;
float: left;
}
.text {
font-size: 20px;
padding-top: 10%;
padding-left: 20px;
padding-bottom: 5%;
float: left;
}
</style>
<body>
<div class="container">
<div class="image">
<img src="https://huggingface.co/spaces/Diangle/Clip4Clip-webvid/resolve/main/Searchium.png" width="333" height="216">
</div>
<div class="text">
<h1 style="font-size: 64px;"> Video Retrieval </h1>
</div>
</div>
</body>
</html>
"""
DESCRIPTION="""This is a video retrieval demo using [Diangle/clip4clip-webvid](https://huggingface.co/Diangle/clip4clip-webvid)."""
DATA_PATH = './data'
ft_visual_features_file = DATA_PATH + '/dataset_v1_visual_features_database.npy'
#load database features:
ft_visual_features_database = np.load(ft_visual_features_file)
database_csv_path = os.path.join(DATA_PATH, 'dataset_v1.csv')
database_df = pd.read_csv(database_csv_path)
class NearestNeighbors:
"""
Class for NearestNeighbors.
"""
def __init__(self, n_neighbors=10, metric='cosine', rerank_from=-1):
"""
metric = 'cosine' / 'binary'
if metric ~= 'cosine' and rerank_from > n_neighbors then a cosine rerank will be performed
"""
self.n_neighbors = n_neighbors
self.metric = metric
self.rerank_from = rerank_from
def normalize(self, a):
return a / np.sum(a**2, axis=1, keepdims=True)
def fit(self, data, o_data=None):
if self.metric == 'cosine':
data = self.normalize(data)
self.index = faiss.IndexFlatIP(data.shape[1])
elif self.metric == 'binary':
self.o_data = data if o_data is None else o_data
#assuming data already packed
self.index = faiss.IndexBinaryFlat(data.shape[1]*8)
self.index.add(np.ascontiguousarray(data))
def kneighbors(self, q_data):
if self.metric == 'cosine':
q_data = self.normalize(q_data)
sim, idx = self.index.search(q_data, self.n_neighbors)
else:
if self.metric == 'binary':
print('This is binary search.')
bq_data = np.packbits((q_data > 0.0).astype(bool), axis=1)
sim, idx = self.index.search(bq_data, max(self.rerank_from, self.n_neighbors))
if self.rerank_from > self.n_neighbors:
re_sims = np.zeros([len(q_data), self.n_neighbors], dtype=float)
re_idxs = np.zeros([len(q_data), self.n_neighbors], dtype=float)
for i, q in enumerate(q_data):
rerank_data = self.o_data[idx[i]]
rerank_search = NearestNeighbors(n_neighbors=self.n_neighbors, metric='cosine')
rerank_search.fit(rerank_data)
re_sim, re_idx = rerank_search.kneighbors(np.asarray([q]))
re_sims[i, :] = re_sim
re_idxs[i, :] = idx[i][re_idx]
idx = re_idxs
sim = re_sims
return sim, idx
model = CLIPTextModelWithProjection.from_pretrained("Diangle/clip4clip-webvid")
tokenizer = CLIPTokenizer.from_pretrained("Diangle/clip4clip-webvid")
def search(search_sentence):
inputs = tokenizer(text=search_sentence , return_tensors="pt", padding=True)
outputs = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], return_dict=False)
text_projection = model.state_dict()['text_projection.weight']
text_embeds = outputs[1] @ text_projection
final_output = text_embeds[torch.arange(text_embeds.shape[0]), inputs["input_ids"].argmax(dim=-1)]
# Normalization
final_output = final_output / final_output.norm(dim=-1, keepdim=True)
final_output = final_output.cpu().detach().numpy()
sequence_output = final_output / np.sum(final_output**2, axis=1, keepdims=True)
nn_search = NearestNeighbors(n_neighbors=5, metric='binary', rerank_from=100)
nn_search.fit(np.packbits((ft_visual_features_database > 0.0).astype(bool), axis=1), o_data=ft_visual_features_database)
sims, idxs = nn_search.kneighbors(sequence_output)
# print(database_df.iloc[idxs[0]]['contentUrl'])
urls = database_df.iloc[idxs[0]]['contentUrl'].to_list()
AUTOPLAY_VIDEOS = []
for url in urls:
AUTOPLAY_VIDEOS.append("""<video controls muted autoplay>
<source src={} type="video/mp4">
</video>""".format(url))
return AUTOPLAY_VIDEOS
with gr.Blocks() as demo:
gr.HTML(HTML)
gr.Markdown(DESCRIPTION)
gr.Markdown("Retrieval of top 5 videos relevant to the input sentence: ")
with gr.Row():
with gr.Column():
inp = gr.Textbox(placeholder="Write a sentence.")
btn = gr.Button(value="Retrieve")
ex = [["mind-blowing magic tricks"],["baking chocolate cake"],
["birds fly in the sky"], ["natural wonders of the world"]]
gr.Examples(examples=ex,
inputs=[inp]
)
with gr.Column():
out = [gr.HTML() for _ in range(5)]
btn.click(search, inputs=inp, outputs=out)
demo.launch()