VisionQuery / app.py
Shashidhar226's picture
Update app.py
0b0d3ca verified
raw
history blame
7.35 kB
import streamlit as st
from io import BytesIO
from PIL import Image
from transformers import ViltProcessor, ViltForQuestionAnswering
import requests
import torch
import torchvision
# from langchain_google_genai import GoogleGenerativeAI
# from langchain_google_genai import ChatGoogleGenerativeAI
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain.chat_models import ChatOpenAI
# from transformers import AutoProcessor, AutoModelForCausalLM
# from huggingface_hub import hf_hub_download
# from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
# from transformers import BlipProcessor, BlipForConditionalGeneration
import os
print(os.getenv('GOOGLE_API_KEY'))
# # os.environ["OPENAI_API_KEY"] = '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'
# os.environ["GOOGLE_API_KEY"] = 'AIzaSyAsZTv6rUZq0TAh6yfmVCDA0tPIcGU3VxA'
# # llm = ChatOpenAI(temperature=0.2, model_name="gpt-3.5-turbo")
# llm = ChatGoogleGenerativeAI(temperature=0.2, model="gemini-pro")
# prompt = PromptTemplate(
# input_variables=["question", "elements"],
# template="""You are a helpful assistant that can answer question related to an image. You have the ability to see the image and answer questions about it.
# I will give you a question and element about the image and you will answer the question.
# \n\n
# #Question: {question}
# #Elements: {elements}
# \n\n
# Your structured response:""",
# )
# def convert_png_to_jpg(image):
# rgb_image = image.convert('RGB')
# byte_arr = BytesIO()
# rgb_image.save(byte_arr, format='JPEG')
# byte_arr.seek(0)
# return Image.open(byte_arr)
# def vilt(image, query):
# processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
# model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
# encoding = processor(image, query, return_tensors="pt")
# outputs = model(**encoding)
# logits = outputs.logits
# idx = logits.argmax(-1).item()
# sol = model.config.id2label[idx]
# return sol
# def blip(image, query):
# processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
# model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
# # unconditional image captioning
# inputs = processor(image, return_tensors="pt")
# out = model.generate(**inputs)
# sol = processor.decode(out[0], skip_special_tokens=True)
# return sol
# def GIT(image, query):
# processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa")
# model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa")
# # file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset")
# # image = Image.open(file_path).convert("RGB")
# pixel_values = processor(images=image, return_tensors="pt").pixel_values
# question = query
# input_ids = processor(text=question, add_special_tokens=False).input_ids
# input_ids = [processor.tokenizer.cls_token_id] + input_ids
# input_ids = torch.tensor(input_ids).unsqueeze(0)
# generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
# response = processor.batch_decode(generated_ids, skip_special_tokens=True)
# generated_ids_1 = model.generate(pixel_values=pixel_values, max_length=50)
# generated_caption = processor.batch_decode(generated_ids_1, skip_special_tokens=True)[0]
# return response[0] + " " + generated_caption
# @st.cache_data(show_spinner="Processing image...")
# def generate_table(uploaded_file):
# image = Image.open(uploaded_file)
# print("graph start")
# model = Pix2StructForConditionalGeneration.from_pretrained('google/deplot')
# processor = Pix2StructProcessor.from_pretrained('google/deplot')
# print("graph start 1")
# inputs = processor(images=image, text="Generate underlying data table of the figure below and give the text as well:", return_tensors="pt")
# predictions = model.generate(**inputs, max_new_tokens=512)
# print("end")
# table = processor.decode(predictions[0], skip_special_tokens=True)
# print(table)
# return table
# def process_query(image, query):
# blip_sol = blip(image, query)
# vilt_sol = vilt(image, query)
# GIT_sol = GIT(image, query)
# llm_sol = blip_sol + " " + vilt_sol + " " + GIT_sol
# print(llm_sol)
# chain = LLMChain(llm=llm, prompt=prompt)
# response = chain.run(question=query, elements=llm_sol)
# return response
# def process_query_graph(data_table, query):
# prompt = PromptTemplate(
# input_variables=["question", "elements"],
# template="""You are a helpful assistant capable of answering questions related to graph images.
# You possess the ability to view the graph image and respond to inquiries about it.
# I will provide you with a question and the associated data table of the graph, and you will answer the question
# \n\n
# #Question: {question}
# #Elements: {elements}
# \n\n
# Your structured response:""",
# )
# chain = LLMChain(llm=llm, prompt=prompt)
# response = chain.run(question=query, elements=data_table)
# return response
# def chart_with_Image():
# st.header("Chat with Image", divider='rainbow')
# uploaded_file = st.file_uploader('Upload your IMAGE', type=['png', 'jpeg', 'jpg'], key="imageUploader")
# if uploaded_file is not None:
# image = Image.open(uploaded_file)
# # ViLT model only supports JPG images
# if image.format == 'PNG':
# image = convert_png_to_jpg(image)
# st.image(image, caption='Uploaded Image.', width=300)
# cancel_button = st.button('Cancel')
# query = st.text_input('Ask a question to the IMAGE')
# if query:
# with st.spinner('Processing...'):
# answer = process_query(image, query)
# st.write(answer)
# if cancel_button:
# st.stop()
# def chat_with_graph():
# st.header("Chat with Graph", divider='rainbow')
# uploaded_file = st.file_uploader('Upload your GRAPH', type=['png', 'jpeg', 'jpg'], key="graphUploader")
# if uploaded_file is not None:
# image = Image.open(uploaded_file)
# # if image.format == 'PNG':
# # image = convert_png_to_jpg(image)
# # data_table = generate_table(uploaded_file)
# st.image(image, caption='Uploaded Image.')
# data_table = generate_table(uploaded_file)
# cancel_button = st.button('Cancel')
# query = st.text_input('Ask a question to the IMAGE')
# if query:
# with st.spinner('Processing...'):
# answer = process_query_graph(data_table, query)
# st.write(answer)
# if cancel_button:
# st.stop()
# st.title("Image Querying App ")
# option = st.selectbox(
# "Who would you like to chart with?",
# ("Image", "Graph"),
# index=None,
# placeholder="Select contact method...",
# )
# st.write('You selected:', option)
# if option == "Image":
# chart_with_Image()
# elif option == "Graph":
# chat_with_graph()