Spaces:
Runtime error
Runtime error
import streamlit as st | |
from io import BytesIO | |
from PIL import Image | |
from transformers import ViltProcessor, ViltForQuestionAnswering | |
import requests | |
import torch | |
import torchvision | |
# from langchain_google_genai import GoogleGenerativeAI | |
# from langchain_google_genai import ChatGoogleGenerativeAI | |
# from langchain.prompts import PromptTemplate | |
# from langchain.chains import LLMChain | |
# from langchain.chat_models import ChatOpenAI | |
# from transformers import AutoProcessor, AutoModelForCausalLM | |
# from huggingface_hub import hf_hub_download | |
# from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor | |
# from transformers import BlipProcessor, BlipForConditionalGeneration | |
import os | |
print(os.getenv('GOOGLE_API_KEY')) | |
# # os.environ["OPENAI_API_KEY"] = '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' | |
# os.environ["GOOGLE_API_KEY"] = 'AIzaSyAsZTv6rUZq0TAh6yfmVCDA0tPIcGU3VxA' | |
# # llm = ChatOpenAI(temperature=0.2, model_name="gpt-3.5-turbo") | |
# llm = ChatGoogleGenerativeAI(temperature=0.2, model="gemini-pro") | |
# prompt = PromptTemplate( | |
# input_variables=["question", "elements"], | |
# template="""You are a helpful assistant that can answer question related to an image. You have the ability to see the image and answer questions about it. | |
# I will give you a question and element about the image and you will answer the question. | |
# \n\n | |
# #Question: {question} | |
# #Elements: {elements} | |
# \n\n | |
# Your structured response:""", | |
# ) | |
# def convert_png_to_jpg(image): | |
# rgb_image = image.convert('RGB') | |
# byte_arr = BytesIO() | |
# rgb_image.save(byte_arr, format='JPEG') | |
# byte_arr.seek(0) | |
# return Image.open(byte_arr) | |
# def vilt(image, query): | |
# processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
# model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
# encoding = processor(image, query, return_tensors="pt") | |
# outputs = model(**encoding) | |
# logits = outputs.logits | |
# idx = logits.argmax(-1).item() | |
# sol = model.config.id2label[idx] | |
# return sol | |
# def blip(image, query): | |
# processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
# model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") | |
# # unconditional image captioning | |
# inputs = processor(image, return_tensors="pt") | |
# out = model.generate(**inputs) | |
# sol = processor.decode(out[0], skip_special_tokens=True) | |
# return sol | |
# def GIT(image, query): | |
# processor = AutoProcessor.from_pretrained("microsoft/git-base-textvqa") | |
# model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-textvqa") | |
# # file_path = hf_hub_download(repo_id="nielsr/textvqa-sample", filename="bus.png", repo_type="dataset") | |
# # image = Image.open(file_path).convert("RGB") | |
# pixel_values = processor(images=image, return_tensors="pt").pixel_values | |
# question = query | |
# input_ids = processor(text=question, add_special_tokens=False).input_ids | |
# input_ids = [processor.tokenizer.cls_token_id] + input_ids | |
# input_ids = torch.tensor(input_ids).unsqueeze(0) | |
# generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) | |
# response = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
# generated_ids_1 = model.generate(pixel_values=pixel_values, max_length=50) | |
# generated_caption = processor.batch_decode(generated_ids_1, skip_special_tokens=True)[0] | |
# return response[0] + " " + generated_caption | |
# @st.cache_data(show_spinner="Processing image...") | |
# def generate_table(uploaded_file): | |
# image = Image.open(uploaded_file) | |
# print("graph start") | |
# model = Pix2StructForConditionalGeneration.from_pretrained('google/deplot') | |
# processor = Pix2StructProcessor.from_pretrained('google/deplot') | |
# print("graph start 1") | |
# inputs = processor(images=image, text="Generate underlying data table of the figure below and give the text as well:", return_tensors="pt") | |
# predictions = model.generate(**inputs, max_new_tokens=512) | |
# print("end") | |
# table = processor.decode(predictions[0], skip_special_tokens=True) | |
# print(table) | |
# return table | |
# def process_query(image, query): | |
# blip_sol = blip(image, query) | |
# vilt_sol = vilt(image, query) | |
# GIT_sol = GIT(image, query) | |
# llm_sol = blip_sol + " " + vilt_sol + " " + GIT_sol | |
# print(llm_sol) | |
# chain = LLMChain(llm=llm, prompt=prompt) | |
# response = chain.run(question=query, elements=llm_sol) | |
# return response | |
# def process_query_graph(data_table, query): | |
# prompt = PromptTemplate( | |
# input_variables=["question", "elements"], | |
# template="""You are a helpful assistant capable of answering questions related to graph images. | |
# You possess the ability to view the graph image and respond to inquiries about it. | |
# I will provide you with a question and the associated data table of the graph, and you will answer the question | |
# \n\n | |
# #Question: {question} | |
# #Elements: {elements} | |
# \n\n | |
# Your structured response:""", | |
# ) | |
# chain = LLMChain(llm=llm, prompt=prompt) | |
# response = chain.run(question=query, elements=data_table) | |
# return response | |
# def chart_with_Image(): | |
# st.header("Chat with Image", divider='rainbow') | |
# uploaded_file = st.file_uploader('Upload your IMAGE', type=['png', 'jpeg', 'jpg'], key="imageUploader") | |
# if uploaded_file is not None: | |
# image = Image.open(uploaded_file) | |
# # ViLT model only supports JPG images | |
# if image.format == 'PNG': | |
# image = convert_png_to_jpg(image) | |
# st.image(image, caption='Uploaded Image.', width=300) | |
# cancel_button = st.button('Cancel') | |
# query = st.text_input('Ask a question to the IMAGE') | |
# if query: | |
# with st.spinner('Processing...'): | |
# answer = process_query(image, query) | |
# st.write(answer) | |
# if cancel_button: | |
# st.stop() | |
# def chat_with_graph(): | |
# st.header("Chat with Graph", divider='rainbow') | |
# uploaded_file = st.file_uploader('Upload your GRAPH', type=['png', 'jpeg', 'jpg'], key="graphUploader") | |
# if uploaded_file is not None: | |
# image = Image.open(uploaded_file) | |
# # if image.format == 'PNG': | |
# # image = convert_png_to_jpg(image) | |
# # data_table = generate_table(uploaded_file) | |
# st.image(image, caption='Uploaded Image.') | |
# data_table = generate_table(uploaded_file) | |
# cancel_button = st.button('Cancel') | |
# query = st.text_input('Ask a question to the IMAGE') | |
# if query: | |
# with st.spinner('Processing...'): | |
# answer = process_query_graph(data_table, query) | |
# st.write(answer) | |
# if cancel_button: | |
# st.stop() | |
# st.title("Image Querying App ") | |
# option = st.selectbox( | |
# "Who would you like to chart with?", | |
# ("Image", "Graph"), | |
# index=None, | |
# placeholder="Select contact method...", | |
# ) | |
# st.write('You selected:', option) | |
# if option == "Image": | |
# chart_with_Image() | |
# elif option == "Graph": | |
# chat_with_graph() |