Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import torch | |
import evaluate | |
from datasets import load_dataset | |
from evaluate import load as load_metric | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from sklearn.metrics import accuracy_score, f1_score | |
from tqdm.auto import tqdm | |
from torch.utils.data import DataLoader | |
select = st.selectbox('Which model would you like to evaluate?', | |
('Bart', 'mBart')) | |
def get_datasets(): | |
if select == 'Bart': | |
all_datasets = ["Communication Networks: unseen questions", "Communication Networks: unseen answers"] | |
if select == 'mBart': | |
all_datasets = ["Micro Job: unseen questions", "Micro Job: unseen answers", "Legal Domain: unseen questions", "Legal Domain: unseen answers"] | |
return all_datasets | |
all_datasets = get_datasets() | |
def get_split(dataset_name): | |
if dataset_name == "Communication Networks: unseen questions": | |
split = load_dataset("Short-Answer-Feedback/saf_communication_networks_english", split="test_unseen_questions") | |
if dataset_name == "Communication Networks: unseen answers": | |
split = load_dataset("Short-Answer-Feedback/saf_communication_networks_english", split="test_unseen_answers") | |
if dataset_name == "Micro Job: unseen questions": | |
split = load_dataset("Short-Answer-Feedback/saf_micro_job_german", split="test_unseen_questions") | |
if dataset_name == "Micro Job: unseen answers": | |
split = load_dataset("Short-Answer-Feedback/saf_micro_job_german", split="test_unseen_answers") | |
if dataset_name == "Legal Domain: unseen questions": | |
split = load_dataset("Short-Answer-Feedback/saf_legal_domain_german", split="test_unseen_questions") | |
if dataset_name == "Legal Domain: unseen answers": | |
split = load_dataset("Short-Answer-Feedback/saf_legal_domain_german", split="test_unseen_answers") | |
return split | |
def get_model(datasetname): | |
if datasetname == "Communication Networks: unseen questions" or datasetname == "Communication Networks: unseen answers": | |
model = "Short-Answer-Feedback/bart-finetuned-saf-communication-networks" | |
if datasetname == "Micro Job: unseen questions" or datasetname == "Micro Job: unseen answers": | |
model = "Short-Answer-Feedback/mbart-finetuned-saf-micro-job" | |
if datasetname == "Legal Domain: unseen questions" or datasetname == "Legal Domain: unseen answers": | |
model = "Short-Answer-Feedback/mbart-finetuned-saf-legal-domain" | |
return model | |
def get_tokenizer(datasetname): | |
if datasetname == "Communication Networks: unseen questions" or datasetname == "Communication Networks: unseen answers": | |
tokenizer = "Short-Answer-Feedback/bart-finetuned-saf-communication-networks" | |
if datasetname == "Micro Job: unseen questions" or datasetname == "Micro Job: unseen answers": | |
tokenizer = "Short-Answer-Feedback/mbart-finetuned-saf-micro-job" | |
if datasetname == "Legal Domain: unseen questions" or datasetname == "Legal Domain: unseen answers": | |
tokenizer = "Short-Answer-Feedback/mbart-finetuned-saf-legal-domain" | |
return tokenizer | |
sacrebleu = load_metric('sacrebleu') | |
rouge = load_metric('rouge') | |
meteor = load_metric('meteor') | |
bertscore = load_metric('bertscore') | |
MAX_INPUT_LENGTH = 256 | |
MAX_TARGET_LENGTH = 128 | |
def preprocess_function(examples): | |
""" | |
Preprocess entries of the given dataset | |
Params: | |
examples (Dataset): dataset to be preprocessed | |
Returns: | |
model_inputs (BatchEncoding): tokenized dataset entries | |
""" | |
inputs, targets = [], [] | |
for i in range(len(examples['question'])): | |
inputs.append(f"Antwort: {examples['provided_answer'][i]} Lösung: {examples['reference_answer'][i]} Frage: {examples['question'][i]}") | |
targets.append(f"{examples['verification_feedback'][i]} Feedback: {examples['answer_feedback'][i]}") | |
# apply tokenization to inputs and labels | |
model_inputs = tokenizer(inputs, max_length=MAX_INPUT_LENGTH, padding='max_length', truncation=True) | |
labels = tokenizer(text_target=targets, max_length=MAX_TARGET_LENGTH, padding='max_length', truncation=True) | |
model_inputs['labels'] = labels['input_ids'] | |
return model_inputs | |
def flatten_list(l): | |
""" | |
Utility function to convert a list of lists into a flattened list | |
Params: | |
l (list of lists): list to be flattened | |
Returns: | |
A flattened list with the elements of the original list | |
""" | |
return [item for sublist in l for item in sublist] | |
def extract_feedback(predictions): | |
""" | |
Utility function to extract the feedback from the predictions of the model | |
Params: | |
predictions (list): complete model predictions | |
Returns: | |
feedback (list): extracted feedback from the model's predictions | |
""" | |
feedback = [] | |
# iterate through predictions and try to extract predicted feedback | |
for pred in predictions: | |
try: | |
fb = pred.split(':', 1)[1] | |
except IndexError: | |
try: | |
if pred.lower().startswith('partially correct'): | |
fb = pred.split(' ', 1)[2] | |
else: | |
fb = pred.split(' ', 1)[1] | |
except IndexError: | |
fb = pred | |
feedback.append(fb.strip()) | |
return feedback | |
def extract_labels(predictions): | |
""" | |
Utility function to extract the labels from the predictions of the model | |
Params: | |
predictions (list): complete model predictions | |
Returns: | |
feedback (list): extracted labels from the model's predictions | |
""" | |
labels = [] | |
for pred in predictions: | |
if pred.lower().startswith('correct'): | |
label = 'Correct' | |
elif pred.lower().startswith('partially correct'): | |
label = 'Partially correct' | |
elif pred.lower().startswith('incorrect'): | |
label = 'Incorrect' | |
else: | |
label = 'Unknown label' | |
labels.append(label) | |
return labels | |
def get_predictions_labels(model, dataloader): | |
""" | |
Evaluate model on the given dataset | |
Params: | |
model (PreTrainedModel): seq2seq model | |
dataloader (torch Dataloader): dataloader of the dataset to be used for evaluation | |
Returns: | |
results (dict): dictionary with the computed evaluation metrics | |
predictions (list): list of the decoded predictions of the model | |
""" | |
decoded_preds, decoded_labels = [], [] | |
model.eval() | |
# iterate through batchs in the dataloader | |
for batch in tqdm(dataloader): | |
with torch.no_grad(): | |
batch = {k: v.to(device) for k, v in batch.items()} | |
# generate tokens from batch | |
generated_tokens = model.generate( | |
batch['input_ids'], | |
attention_mask=batch['attention_mask'], | |
max_length=MAX_TARGET_LENGTH | |
) | |
# get golden labels from batch | |
labels_batch = batch['labels'] | |
# decode model predictions and golden labels | |
decoded_preds_batch = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) | |
decoded_labels_batch = tokenizer.batch_decode(labels_batch, skip_special_tokens=True) | |
decoded_preds.append(decoded_preds_batch) | |
decoded_labels.append(decoded_labels_batch) | |
# convert predictions and golden labels into flattened lists | |
predictions = flatten_list(decoded_preds) | |
labels = flatten_list(decoded_labels) | |
return predictions, labels | |
def load_data(): | |
df = pd.DataFrame(columns=['Model', 'Dataset', 'SacreBLEU', 'ROUGE-2', 'METEOR', 'BERTScore', 'Accuracy', 'Weighted F1', 'Macro F1']) | |
for ds in all_datasets: | |
split = get_split(ds) | |
model = AutoModelForSeq2SeqLM.from_pretrained(get_model(ds)) | |
tokenizer = AutoTokenizer.from_pretrained(get_tokenizer(ds)) | |
processed_dataset = split.map( | |
preprocess_function, | |
batched=True, | |
remove_columns=split.column_names | |
) | |
processed_dataset.set_format('torch') | |
dataloader = DataLoader(processed_dataset, batch_size=4) | |
predictions, labels = get_predictions_labels(model, dataloader) | |
predicted_feedback = extract_feedback(predictions) | |
predicted_labels = extract_labels(predictions) | |
reference_feedback = [x.split('Feedback:', 1)[1].strip() for x in labels] | |
reference_labels = [x.split('Feedback:', 1)[0].strip() for x in labels] | |
rouge_score = rouge.compute(predictions=predicted_feedback, references=reference_feedback)['rouge2'] | |
bleu_score = sacrebleu.compute(predictions=predicted_feedback, references=[[x] for x in reference_feedback])['score'] | |
meteor_score = meteor.compute(predictions=predicted_feedback, references=reference_feedback)['meteor'] | |
bert_score = bertscore.compute(predictions=predicted_feedback, references=reference_feedback, lang='de', model_type='bert-base-multilingual-cased', rescale_with_baseline=True) | |
reference_labels_np = np.array(reference_labels) | |
accuracy_value = accuracy_score(reference_labels_np, predicted_labels) | |
f1_weighted_value = f1_score(reference_labels_np, predicted_labels, average='weighted') | |
f1_macro_value = f1_score(reference_labels_np, predicted_labels, average='macro', labels=['Incorrect', 'Partially correct', 'Correct']) | |
new_row_data = {"Model": get_model(ds), "Dataset": ds, "SacreBLEU": bleu_score, "ROUGE-2": rouge_score, "METEOR": meteor_score, "BERTScore": bert_score, "Accuracy": accuracy_value, "Weighted F1": f1_weighted_value, "Macro F1": f1_macro_value} | |
new_row = pd.DataFrame(new_row_data) | |
df = pd.concat([df, new_row]) | |
return df | |
dataframe = load_data() | |
st.dataframe(dataframe) |