VoiceAssistance / app.py
StevenChen16's picture
4th commit - change position of spaces.GPU
88962a5
raw
history blame
20 kB
import os
import sys
import re
import uuid
import tempfile
import json
from argparse import ArgumentParser
from threading import Thread
from queue import Queue
import torch
import torchaudio
import gradio as gr
import whisper
from transformers import (
WhisperFeatureExtractor,
AutoTokenizer,
AutoModel,
AutoModelForCausalLM
)
from transformers.generation.streamers import BaseStreamer
from speech_tokenizer.modeling_whisper import WhisperVQEncoder
from speech_tokenizer.utils import extract_speech_token
# Add local paths
sys.path.insert(0, "./cosyvoice")
sys.path.insert(0, "./third_party/Matcha-TTS")
from flow_inference import AudioDecoder
# RAG imports
from langchain_community.document_loaders import *
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.faiss import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import joblib
import spaces
# Token streamer for generation
class TokenStreamer(BaseStreamer):
def __init__(self, skip_prompt: bool = False, timeout=None):
self.skip_prompt = skip_prompt
self.token_queue = Queue()
self.stop_signal = None
self.next_tokens_are_prompt = True
self.timeout = timeout
def put(self, value):
if len(value.shape) > 1 and value.shape[0] > 1:
raise ValueError("TextStreamer only supports batch size 1")
elif len(value.shape) > 1:
value = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
self.next_tokens_are_prompt = False
return
for token in value.tolist():
self.token_queue.put(token)
def end(self):
self.token_queue.put(self.stop_signal)
def __iter__(self):
return self
def __next__(self):
value = self.token_queue.get(timeout=self.timeout)
if value == self.stop_signal:
raise StopIteration()
else:
return value
# File loader mapping
LOADER_MAPPING = {
'.pdf': PyPDFLoader,
'.txt': TextLoader,
'.md': UnstructuredMarkdownLoader,
'.csv': CSVLoader,
'.jpg': UnstructuredImageLoader,
'.jpeg': UnstructuredImageLoader,
'.png': UnstructuredImageLoader,
'.json': JSONLoader,
'.html': BSHTMLLoader,
'.htm': BSHTMLLoader
}
def load_single_file(file_path):
_, ext = os.path.splitext(file_path)
ext = ext.lower()
loader_class = LOADER_MAPPING.get(ext)
if not loader_class:
print(f"Unsupported file type: {ext}")
return None
loader = loader_class(file_path)
docs = list(loader.lazy_load())
return docs
def load_files(file_paths: list):
if not file_paths:
return []
docs = []
for file_path in tqdm(file_paths):
print("Loading docs:", file_path)
loaded_docs = load_single_file(file_path)
if loaded_docs:
docs.extend(loaded_docs)
return docs
def split_text(txt, chunk_size=200, overlap=20):
if not txt:
return None
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
docs = splitter.split_documents(txt)
return docs
def create_embedding_model(model_file):
embedding = HuggingFaceEmbeddings(model_name=model_file, model_kwargs={'trust_remote_code': True})
return embedding
def save_file_paths(store_path, file_paths):
joblib.dump(file_paths, f'{store_path}/file_paths.pkl')
def load_file_paths(store_path):
file_paths_file = f'{store_path}/file_paths.pkl'
if os.path.exists(file_paths_file):
return joblib.load(file_paths_file)
return None
def file_paths_match(store_path, file_paths):
saved_file_paths = load_file_paths(store_path)
return saved_file_paths == file_paths
def create_vector_store(docs, store_file, embeddings):
vector_store = FAISS.from_documents(docs, embeddings)
vector_store.save_local(store_file)
return vector_store
def load_vector_store(store_path, embeddings):
if os.path.exists(store_path):
vector_store = FAISS.load_local(store_path, embeddings, allow_dangerous_deserialization=True)
return vector_store
else:
return None
def load_or_create_store(store_path, file_paths, embeddings):
if os.path.exists(store_path) and file_paths_match(store_path, file_paths):
print("Vector database is consistent with last use, no need to rewrite")
vector_store = load_vector_store(store_path, embeddings)
if vector_store:
return vector_store
print("Rewriting database")
pages = load_files(file_paths)
docs = split_text(pages)
vector_store = create_vector_store(docs, store_path, embeddings)
save_file_paths(store_path, file_paths)
return vector_store
def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8):
retriever = vector_store.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"score_threshold": relevance_threshold, "k": k}
)
similar_docs = retriever.invoke(query)
context = [doc.page_content for doc in similar_docs]
return context
class ModelWorker:
def __init__(self, model_path, device='cuda'):
self.device = device
self.glm_model = AutoModel.from_pretrained(
model_path,
trust_remote_code=True,
device=device
).to(device).eval()
self.glm_tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True
)
@torch.inference_mode()
def generate_stream(self, params):
prompt = params["prompt"]
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
max_new_tokens = int(params.get("max_new_tokens", 256))
inputs = self.glm_tokenizer([prompt], return_tensors="pt")
inputs = inputs.to(self.device)
streamer = TokenStreamer(skip_prompt=True)
thread = Thread(
target=self.glm_model.generate,
kwargs=dict(
**inputs,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
top_p=float(top_p),
streamer=streamer
)
)
thread.start()
for token_id in streamer:
yield token_id
@spaces.GPU
def generate_stream_gate(self, params):
try:
for x in self.generate_stream(params):
yield x
except Exception as e:
print("Caught Unknown Error", e)
ret = "Server Error"
yield ret
def initialize_embedding_model_and_vector_store(Embedding_Model, store_path, file_paths):
embedding_model = create_embedding_model(Embedding_Model)
vector_store = load_or_create_store(store_path, file_paths, embedding_model)
return vector_store, embedding_model
def handle_file_upload(files):
if not files:
return None
file_paths = [file.name for file in files]
return file_paths
def reinitialize_database(files, progress=gr.Progress()):
global vector_store, embedding_model
if not files:
return "No files uploaded. Please upload files first."
file_paths = [file.name for file in files]
progress(0, desc="Initializing embedding model...")
embedding_model = create_embedding_model(Embedding_Model)
progress(0.3, desc="Loading documents...")
pages = load_files(file_paths)
progress(0.5, desc="Splitting text...")
docs = split_text(pages)
progress(0.7, desc="Creating vector store...")
vector_store = create_vector_store(docs, store_path, embedding_model)
save_file_paths(store_path, file_paths)
return "Database reinitialized successfully!"
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default="7860")
parser.add_argument("--flow-path", type=str, default="THUDM/glm-4-voice-decoder")
parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
parser.add_argument("--tokenizer-path", type=str, default="THUDM/glm-4-voice-tokenizer")
# parser.add_argument("--whisper_model", type=str, default="base")
parser.add_argument("--share", action='store_true')
args = parser.parse_args()
# Define model configurations
flow_config = os.path.join(args.flow_path, "config.yaml")
flow_checkpoint = os.path.join(args.flow_path, 'flow.pt')
hift_checkpoint = os.path.join(args.flow_path, 'hift.pt')
device = "cuda"
# Global variables
audio_decoder = None
whisper_model = None
feature_extractor = None
glm_model = None
glm_tokenizer = None
vector_store = None
embedding_model = None
whisper_transcribe_model = None
model_worker = None
# RAG configuration
Embedding_Model = 'intfloat/multilingual-e5-large-instruct'
file_paths = []
store_path = './data.faiss'
def initialize_fn():
global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
global vector_store, embedding_model, whisper_transcribe_model, model_worker
if audio_decoder is not None:
return
model_worker = ModelWorker(args.model_path, device)
glm_tokenizer = model_worker.glm_tokenizer
audio_decoder = AudioDecoder(
config_path=flow_config,
flow_ckpt_path=flow_checkpoint,
hift_ckpt_path=hift_checkpoint,
device=device
)
whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)
embedding_model = create_embedding_model(Embedding_Model)
vector_store = load_or_create_store(store_path, file_paths, embedding_model)
whisper_transcribe_model = whisper.load_model("base")
def clear_fn():
return [], [], '', '', '', None, None
def inference_fn(
temperature: float,
top_p: float,
max_new_token: int,
input_mode,
audio_path: str | None,
input_text: str | None,
history: list[dict],
previous_input_tokens: str,
previous_completion_tokens: str,
):
global whisper_transcribe_model, vector_store
using_context = False
if input_mode == "audio":
assert audio_path is not None
history.append({"role": "user", "content": {"path": audio_path}})
audio_tokens = extract_speech_token(
whisper_model, feature_extractor, [audio_path]
)[0]
if len(audio_tokens) == 0:
raise gr.Error("No audio tokens extracted")
audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens])
audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>"
user_input = audio_tokens
system_prompt = "User will provide you with a speech instruction. Do it step by step."
whisper_result = whisper_transcribe_model.transcribe(audio_path)
transcribed_text = whisper_result['text']
context = query_vector_store(vector_store, transcribed_text, 4, 0.7)
else:
assert input_text is not None
history.append({"role": "user", "content": input_text})
user_input = input_text
system_prompt = "User will provide you with a text instruction. Do it step by step."
context = query_vector_store(vector_store, input_text, 4, 0.7)
if context is not None:
using_context = True
inputs = previous_input_tokens + previous_completion_tokens
inputs = inputs.strip()
if "<|system|>" not in inputs:
inputs += f"<|system|>\n{system_prompt}"
if ("<|context|>" not in inputs) and (using_context == True):
inputs += f"<|context|> According to the following content: {context}, Please answer the question"
if "<|context|>" not in inputs and context is not None:
inputs += f"<|context|>\n{context}"
inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"
with torch.no_grad():
text_tokens, audio_tokens = [], []
audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
complete_tokens = []
prompt_speech_feat = torch.zeros(1, 0, 80).to(device)
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device)
this_uuid = str(uuid.uuid4())
tts_speechs = []
tts_mels = []
prev_mel = None
is_finalize = False
block_size = 10
# Generate tokens using ModelWorker directly instead of API
for token_id in model_worker.generate_stream_gate({
"prompt": inputs,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_token,
}):
if isinstance(token_id, str): # Error case
yield history, inputs, '', token_id, None, None
return
if token_id == end_token_id:
is_finalize = True
if len(audio_tokens) >= block_size or (is_finalize and audio_tokens):
block_size = 20
tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0)
if prev_mel is not None:
prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)
tts_speech, tts_mel = audio_decoder.token2wav(
tts_token,
uuid=this_uuid,
prompt_token=flow_prompt_speech_token.to(device),
prompt_feat=prompt_speech_feat.to(device),
finalize=is_finalize
)
prev_mel = tts_mel
tts_speechs.append(tts_speech.squeeze())
tts_mels.append(tts_mel)
yield history, inputs, '', '', (22050, tts_speech.squeeze().cpu().numpy()), None
flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1)
audio_tokens = []
if not is_finalize:
complete_tokens.append(token_id)
if token_id >= audio_offset:
audio_tokens.append(token_id - audio_offset)
else:
text_tokens.append(token_id)
# Generate final audio and save
tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav")
history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}})
history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)})
yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())
def update_input_interface(input_mode):
if input_mode == "audio":
return [gr.update(visible=True), gr.update(visible=False)]
else:
return [gr.update(visible=False), gr.update(visible=True)]
# Create Gradio interface with new layout
with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
with gr.Row():
# Left column for chat interface
with gr.Column(scale=2):
gr.Markdown("## Chat Interface")
with gr.Row():
temperature = gr.Number(label="Temperature", value=0.2, minimum=0, maximum=1)
top_p = gr.Number(label="Top p", value=0.8, minimum=0, maximum=1)
max_new_token = gr.Number(label="Max new tokens", value=2000, minimum=1)
chatbot = gr.Chatbot(
elem_id="chatbot",
bubble_full_width=False,
type="messages",
scale=1,
height=500
)
with gr.Row():
input_mode = gr.Radio(
["audio", "text"],
label="Input Mode",
value="audio"
)
with gr.Row():
audio = gr.Audio(
label="Input audio",
type='filepath',
show_download_button=True,
visible=True
)
text_input = gr.Textbox(
label="Input text",
placeholder="Enter your text here...",
lines=2,
visible=False
)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
reset_btn = gr.Button("Clear")
output_audio = gr.Audio(
label="Play",
streaming=True,
autoplay=True,
show_download_button=False
)
complete_audio = gr.Audio(
label="Last Output Audio (If Any)",
show_download_button=True
)
# Right column for database management
with gr.Column(scale=1):
gr.Markdown("## Database Management")
file_upload = gr.Files(
label="Upload Database Files",
file_types=[".txt", ".pdf", ".md", ".csv", ".json", ".html", ".htm"],
file_count="multiple"
)
reinit_btn = gr.Button("Reinitialize Database", variant="secondary")
status_text = gr.Textbox(label="Status", interactive=False)
history_state = gr.State([])
# Setup interaction handlers
respond = submit_btn.click(
inference_fn,
inputs=[
temperature,
top_p,
max_new_token,
input_mode,
audio,
text_input,
history_state,
],
outputs=[
history_state,
output_audio,
complete_audio
]
)
respond.then(lambda s: s, [history_state], chatbot)
reset_btn.click(
clear_fn,
outputs=[
chatbot,
history_state,
output_audio,
complete_audio
]
)
input_mode.change(
update_input_interface,
inputs=[input_mode],
outputs=[audio, text_input]
)
# Database reinitialization handler
reinit_btn.click(
reinitialize_database,
inputs=[file_upload],
outputs=[status_text]
)
# Initialize models and launch interface
initialize_fn()
demo.launch(
server_port=args.port,
server_name=args.host,
share=args.share
)