Spaces:
Running
Running
import gradio as gr | |
import os | |
from rag_pipeline import RAGPipeline | |
import openai | |
openai.api_key = os.environ.get('OPENAI_API_KEY') | |
# Initialize the RAG pipeline | |
rag = RAGPipeline("metadata_map.json", "pdfs") | |
def process_query(question, response_format): | |
response = rag.query(question) | |
if response_format == "Markdown": | |
return response["markdown"] | |
else: | |
return response["raw"] | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=process_query, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question"), | |
gr.Radio(["Markdown", "Raw Text"], label="Response Format", value="Markdown") | |
], | |
outputs=gr.Markdown(label="Response"), | |
title="Vaccine Coverage and Hesitancy Research QA", | |
description="Ask questions about vaccine coverage and hesitancy. The system will provide answers based on the available research papers.", | |
examples=[ | |
["What are the main factors contributing to vaccine hesitancy?", "Markdown"], | |
["What are the current vaccine coverage rates in African countries?", "Raw Text"], | |
], | |
allow_flagging="never" | |
) | |
# Launch the app | |
iface.launch() |