File size: 9,872 Bytes
aa43295
4f12271
0308f3c
 
 
 
 
190f21f
 
0308f3c
 
51fa852
64d7563
 
9b90d69
3adc147
 
 
 
26f734b
aa43295
 
26f734b
 
 
0308f3c
 
 
 
 
64d7563
 
 
 
 
 
 
0308f3c
 
 
 
 
 
 
5362be0
51fa852
 
 
 
5362be0
3adc147
0308f3c
 
 
 
 
 
 
 
 
3adc147
0308f3c
 
e7481b0
0308f3c
 
 
e7481b0
 
0308f3c
 
a86354d
0308f3c
 
a86354d
0308f3c
a86354d
0308f3c
a86354d
 
0308f3c
 
 
e7481b0
0308f3c
3adc147
 
 
 
e7481b0
 
3adc147
 
a86354d
3adc147
 
0308f3c
 
 
a86354d
 
0308f3c
 
 
 
 
3adc147
0308f3c
e7481b0
3adc147
 
 
 
 
 
a65fdff
aa43295
0308f3c
71cb006
d4989bb
 
 
 
 
 
0308f3c
930288d
d4989bb
 
930288d
 
 
 
0081daf
0308f3c
 
 
 
 
8c90037
0308f3c
5362be0
 
 
 
0308f3c
aa43295
930288d
5362be0
930288d
 
 
 
 
e7481b0
5362be0
aa43295
5362be0
 
 
e7481b0
0308f3c
190f21f
66854bf
 
 
aa43295
399e250
0308f3c
66854bf
 
 
 
 
 
 
 
 
e7481b0
66854bf
 
 
 
 
e7481b0
66854bf
 
 
 
 
 
 
 
 
 
 
 
 
 
8c82859
ad39d92
99dc3b5
 
66854bf
 
aa43295
be9cd13
66854bf
 
 
a65fdff
 
 
66854bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5362be0
aa43295
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# app.py
import spaces
from torch.nn import DataParallel  
from torch import Tensor  
from transformers import AutoTokenizer, AutoModel  
from huggingface_hub import InferenceClient  
from openai import OpenAI  
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain_chroma import Chroma
from chromadb import Documents, EmbeddingFunction, Embeddings  
from chromadb.config import Settings  
import chromadb #import HttpClient 
import os
import tempfile
import re 
import uuid  
import gradio as gr  
import torch  
import torch.nn.functional as F  
from dotenv import load_dotenv
from utils import load_env_variables, parse_and_route, escape_special_characters 
from globalvars import API_BASE, intention_prompt, tasks, system_message, model_name, metadata_prompt 

load_dotenv()

os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'  
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'  
os.environ['CUDA_CACHE_DISABLE'] = '1'  
  
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  

# Ensure the temporary directory exists
temp_dir = '/tmp/gradio/'
os.makedirs(temp_dir, exist_ok=True)

# Set Gradio cache directory
gr.components.file.GRADIO_CACHE = temp_dir
  
### Utils  
hf_token, yi_token = load_env_variables()  
  
def clear_cuda_cache():  
    torch.cuda.empty_cache()  
  
client = OpenAI(api_key=yi_token, base_url=API_BASE)

chroma_client = chromadb.Client(Settings())  
  
# Create a collection  
chroma_collection = chroma_client.create_collection("all-my-documents")  

class EmbeddingGenerator:  
    def __init__(self, model_name: str, token: str, intention_client):  
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  
        self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=token, trust_remote_code=True)  
        self.model = AutoModel.from_pretrained(model_name, token=token, trust_remote_code=True).to(self.device)  
        self.intention_client = intention_client  
  
    def clear_cuda_cache(self):  
        torch.cuda.empty_cache()  

    @spaces.GPU  
    def compute_embeddings(self, input_text: str):  
        escaped_input_text = escape_special_characters(input_text)  
        intention_completion = self.intention_client.chat.completions.create(  
            model="yi-large",  
            messages=[  
                {"role": "system", "content": escape_special_characters(intention_prompt)},  
                {"role": "user", "content": escaped_input_text}  
            ]  
        )  
        intention_output = intention_completion.choices[0].message.content  
        # Parse and route the intention  
        parsed_task = parse_and_route(intention_output)  
        selected_task = parsed_task  
        # Construct the prompt  
        if selected_task in tasks:
            task_description = tasks[selected_task]  
        else:
            task_description = tasks["DEFAULT"]
            print(f"Selected task not found: {selected_task}")  
  
        query_prefix = f"Instruct: {task_description}\nQuery: "  
        queries = [escaped_input_text]  
  
        # Get the metadata  
        metadata_completion = self.intention_client.chat.completions.create(  
            model="yi-large",  
            messages=[  
                {"role": "system", "content": escape_special_characters(metadata_prompt)},  
                {"role": "user", "content": escaped_input_text}  
            ]  
        )  
        metadata_output = metadata_completion.choices[0].message.content
        metadata = self.extract_metadata(metadata_output)  
  
        # Get the embeddings  
        with torch.no_grad():  
            inputs = self.tokenizer(queries, return_tensors='pt', padding=True, truncation=True, max_length=4096).to(self.device)  
            outputs = self.model(**inputs)
            query_embeddings = outputs["sentence_embeddings"].mean(dim=1)    
            query_embeddings = outputs.last_hidden_state.mean(dim=1)  
  
            # Normalize embeddings  
            query_embeddings = F.normalize(query_embeddings, p=2, dim=1)  
            embeddings_list = query_embeddings.detach().cpu().numpy().tolist()  
  
            self.clear_cuda_cache()  
            return embeddings_list, metadata   
  
    def extract_metadata(self, metadata_output: str):  
        # Regex pattern to extract key-value pairs  
        pattern = re.compile(r'\"(\w+)\": \"([^\"]+)\"')  
        matches = pattern.findall(metadata_output)  
        metadata = {key: value for key, value in matches}  
        return metadata 

class MyEmbeddingFunction(EmbeddingFunction):  
    def __init__(self, model_name: str, token: str, intention_client):  
        self.model_name = model_name  
        self.token = token  
        self.intention_client = intention_client  
  
    def create_embedding_generator(self):  
        return EmbeddingGenerator(self.model_name, self.token, self.intention_client)  
  
    def __call__(self, input: Documents) -> (Embeddings, list):  
        embedding_generator = self.create_embedding_generator()  
        embeddings_with_metadata = [embedding_generator.compute_embeddings(doc.page_content) for doc in input]  
        embeddings = [item[0] for item in embeddings_with_metadata]  
        metadata = [item[1] for item in embeddings_with_metadata]  
        embeddings_flattened = [emb for sublist in embeddings for emb in sublist]  
        metadata_flattened = [meta for sublist in metadata for meta in sublist]  
        return embeddings_flattened, metadata_flattened  
  
def load_documents(file_path: str, mode: str = "elements"):  
    loader = UnstructuredFileLoader(file_path, mode=mode)  
    docs = loader.load()  
    return [doc.page_content for doc in docs]  

def initialize_chroma(collection_name: str, embedding_function: MyEmbeddingFunction):  
    db = Chroma(client=chroma_client, collection_name=collection_name, embedding_function=embedding_function)  
    return db  
  
def add_documents_to_chroma(documents: list, embedding_function: MyEmbeddingFunction):  
    for doc in documents:  
        embeddings, metadata = embedding_function.create_embedding_generator().compute_embeddings(doc)  
        for embedding, meta in zip(embeddings, metadata):  
            chroma_collection.add(  
                ids=[str(uuid.uuid1())],  
                documents=[doc],  
                embeddings=[embedding],  
                metadatas=[meta]  
            )  
  
def query_chroma(query_text: str, embedding_function: MyEmbeddingFunction):  
    query_embeddings, query_metadata = embedding_function.create_embedding_generator().compute_embeddings(query_text)  
    result_docs = chroma_collection.query(  
        query_texts=[query_text],  
        n_results=2  
    )  
    return result_docs  

# Initialize clients  
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)  
embedding_generator = EmbeddingGenerator(model_name=model_name, token=hf_token, intention_client=intention_client)  
embedding_function = MyEmbeddingFunction(model_name=model_name, token=hf_token, intention_client=intention_client)  
chroma_db = initialize_chroma(collection_name="Tonic-instruct", embedding_function=embedding_function)

def respond(  
    message,  
    history: list[tuple[str, str]],  
    system_message,  
    max_tokens,  
    temperature,  
    top_p,  
):  
    retrieved_text = query_documents(message)  
    messages = [{"role": "system", "content": escape_special_characters(system_message)}]  
    for val in history:  
        if val[0]:  
            messages.append({"role": "user", "content": val[0]})  
        if val[1]:  
            messages.append({"role": "assistant", "content": val[1]})  
    messages.append({"role": "user", "content": f"{retrieved_text}\n\n{escape_special_characters(message)}"})  
    response = ""  
    for message in intention_client.chat_completion(  
        messages,  
        max_tokens=max_tokens,  
        stream=True,  
        temperature=temperature,  
        top_p=top_p,  
    ):  
        token = message.choices[0].delta.content  
        response += token  
        yield response  
  
def upload_documents(files):  
    for file in files:  
        loader = UnstructuredFileLoader(file.name)  
        documents = loader.load()  
        add_documents_to_chroma(documents, embedding_function)  
    return "Documents uploaded and processed successfully!"  
  
def query_documents(query):  
    results = query_chroma(query, embedding_function)  
    return "\n\n".join([result.content for result in results])  
  
with gr.Blocks() as demo:  
    with gr.Tab("Upload Documents"):  
        document_upload = gr.File(file_count="multiple", file_types=["document"])  
        upload_button = gr.Button("Upload and Process")  
        upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())  
  
    with gr.Tab("Ask Questions"):  
        with gr.Row():  
            chat_interface = gr.ChatInterface(  
                respond,  
                additional_inputs=[  
                    gr.Textbox(value="You are a friendly Chatbot.", label="System message"),  
                    gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),  
                    gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),  
                    gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),  
                ],  
            )  
            query_input = gr.Textbox(label="Query")  
            query_button = gr.Button("Query")  
            query_output = gr.Textbox()  
            query_button.click(query_documents, inputs=query_input, outputs=query_output)  
  
if __name__ == "__main__":  
    # os.system("chroma run --host localhost --port 8000 &")
    demo.launch()