Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import joblib | |
import shap | |
import xgboost as xgb | |
# Load the saved model and preprocessing objects | |
model_xgb = joblib.load('model_xgb.joblib') | |
scaler = joblib.load('scaler.joblib') | |
ohe = joblib.load('ohe.joblib') | |
# Extract the unique values for 'country' and 'sector' from the OneHotEncoder (ohe) object | |
unique_countries = ohe.categories_[0] # Assuming 'country' is the first categorical feature | |
unique_sectors = ohe.categories_[1] # Assuming 'sector' is the second categorical feature | |
# Define a mapping of encoded values to repayment interval labels | |
repayment_interval_mapping = {0: 'π Bullet Repayment Interval', 1: 'πͺ Irregular Repayment Interval', 2: 'π Monthly Repayment Interval'} | |
# Title with emojis and colors | |
st.markdown("<h1 style='text-align: center; color: blue;'>π Loan Repayment Interval Prediction π</h1>", unsafe_allow_html=True) | |
# Input Features Section with emojis and description | |
st.write("## π― Input Features") | |
st.markdown("Here you can choose the variables to predict the repayment interval based on historical data. Please provide the following details:") | |
# User input fields using unique country and sector values from the OneHotEncoder object | |
country = st.selectbox('π Country', unique_countries) | |
sector = st.selectbox('π’ Sector', unique_sectors) | |
funded_amount = st.number_input('π° Funded Amount', min_value=0, max_value=10000, value=1000, step=50) | |
lender_count = st.number_input('π₯ Lender Count', min_value=1, max_value=100, value=2, step=1) | |
# Create a sample observation from the user input | |
sample_listing = pd.DataFrame({ | |
'country': [country], | |
'sector': [sector], | |
'funded_amount': [funded_amount], | |
'lender_count': [lender_count], | |
}) | |
# Separate categorical and numerical features | |
cat_features = ['country', 'sector'] | |
num_features = ['funded_amount', 'lender_count'] | |
# Get the feature names from the OneHotEncoder | |
ohe_feature_names = ohe.get_feature_names_out(cat_features) | |
# Combine numerical feature names with encoded categorical feature names | |
feature_names = np.concatenate([num_features, ohe_feature_names]) | |
# One-hot encode categorical features | |
X_cat = pd.DataFrame(ohe.transform(sample_listing[cat_features]), columns=ohe_feature_names) | |
# Scale numerical features | |
X_num = pd.DataFrame(scaler.transform(sample_listing[num_features]), columns=num_features) | |
# Combine processed features | |
X_processed = pd.concat([X_num, X_cat], axis=1) | |
# Make a prediction (returns the encoded value) | |
predicted_encoded_repayment_interval = model_xgb.predict(X_processed)[0] | |
# Map the encoded value back to the actual repayment interval label | |
predicted_repayment_interval = repayment_interval_mapping.get(int(predicted_encoded_repayment_interval), "Unknown") | |
# Display the actual repayment interval label with more style | |
st.title("β Predicted Repayment Interval:") | |
st.markdown(f"<h2 style='color:green;'>{predicted_repayment_interval}</h2>", unsafe_allow_html=True) | |
# Explanation for SHAP force plots | |
st.write("## π SHAP Explanation") | |
st.markdown("The following SHAP plots explain the model's decision for each repayment interval type. These visualizations help you understand the key features that influenced the model's prediction.") | |
# SHAP explanations | |
explainer = shap.TreeExplainer(model_xgb) | |
shap_values = explainer.shap_values(X_processed) | |
# Function to add background color to SHAP plots | |
def add_background(html_content): | |
white_background_style = "<style>body { background-color: white; }</style>" | |
return white_background_style + html_content | |
# Generate and save SHAP force plot for Class 0 (Bullet) | |
st.write("### π SHAP Force Plot for Class 0: Bullet Repayment Interval") | |
st.markdown("This plot explains the factors influencing the Bullet repayment interval prediction. Bullet repayment means paying off the loan in one lump sum at the end of the loan period.") | |
shap_html_path_0 = "shap_force_plot_class_0.html" | |
shap.save_html(shap_html_path_0, shap.force_plot( | |
explainer.expected_value[0], | |
shap_values[0][:, 0], | |
X_processed.iloc[0, :].values, | |
feature_names, | |
show=False, | |
matplotlib=False | |
)) | |
with open(shap_html_path_0, 'r', encoding='utf-8') as f: | |
shap_html_0 = f.read() | |
st.components.v1.html(add_background(shap_html_0), height=130) | |
# Generate and save SHAP force plot for Class 1 (Irregular) | |
st.write("### πͺ SHAP Force Plot for Class 1: Irregular Repayment Interval") | |
st.markdown("This plot explains the factors influencing the Irregular repayment interval prediction. Irregular repayment means paying off the loan at irregular intervals based on specific conditions.") | |
shap_html_path_1 = "shap_force_plot_class_1.html" | |
shap.save_html(shap_html_path_1, shap.force_plot( | |
explainer.expected_value[1], | |
shap_values[0][:, 1], | |
X_processed.iloc[0, :].values, | |
feature_names, | |
show=False, | |
matplotlib=False | |
)) | |
with open(shap_html_path_1, 'r', encoding='utf-8') as f: | |
shap_html_1 = f.read() | |
st.components.v1.html(add_background(shap_html_1), height=130) | |
# Generate and save SHAP force plot for Class 2 (Monthly) | |
st.write("### π SHAP Force Plot for Class 2: Monthly Repayment Interval") | |
st.markdown("This plot explains the factors influencing the Monthly repayment interval prediction. Monthly repayment means paying off the loan in equal monthly installments.") | |
shap_html_path_2 = "shap_force_plot_class_2.html" | |
shap.save_html(shap_html_path_2, shap.force_plot( | |
explainer.expected_value[2], | |
shap_values[0][:, 2], | |
X_processed.iloc[0, :].values, | |
feature_names, | |
show=False, | |
matplotlib=False | |
)) | |
with open(shap_html_path_2, 'r', encoding='utf-8') as f: | |
shap_html_2 = f.read() | |
st.components.v1.html(add_background(shap_html_2), height=130) | |