Spaces:
Runtime error
Runtime error
import cv2 | |
import numpy as np | |
from basicsr.metrics.metric_util import reorder_image, to_y_channel | |
from basicsr.utils.registry import METRIC_REGISTRY | |
def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False): | |
"""Calculate PSNR (Peak Signal-to-Noise Ratio). | |
Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio | |
Args: | |
img1 (ndarray): Images with range [0, 255]. | |
img2 (ndarray): Images with range [0, 255]. | |
crop_border (int): Cropped pixels in each edge of an image. These | |
pixels are not involved in the PSNR calculation. | |
input_order (str): Whether the input order is 'HWC' or 'CHW'. | |
Default: 'HWC'. | |
test_y_channel (bool): Test on Y channel of YCbCr. Default: False. | |
Returns: | |
float: psnr result. | |
""" | |
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') | |
if input_order not in ['HWC', 'CHW']: | |
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') | |
img1 = reorder_image(img1, input_order=input_order) | |
img2 = reorder_image(img2, input_order=input_order) | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
if crop_border != 0: | |
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] | |
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] | |
if test_y_channel: | |
img1 = to_y_channel(img1) | |
img2 = to_y_channel(img2) | |
mse = np.mean((img1 - img2)**2) | |
if mse == 0: | |
return float('inf') | |
return 20. * np.log10(255. / np.sqrt(mse)) | |
def _ssim(img1, img2): | |
"""Calculate SSIM (structural similarity) for one channel images. | |
It is called by func:`calculate_ssim`. | |
Args: | |
img1 (ndarray): Images with range [0, 255] with order 'HWC'. | |
img2 (ndarray): Images with range [0, 255] with order 'HWC'. | |
Returns: | |
float: ssim result. | |
""" | |
C1 = (0.01 * 255)**2 | |
C2 = (0.03 * 255)**2 | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
kernel = cv2.getGaussianKernel(11, 1.5) | |
window = np.outer(kernel, kernel.transpose()) | |
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] | |
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] | |
mu1_sq = mu1**2 | |
mu2_sq = mu2**2 | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq | |
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq | |
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) | |
return ssim_map.mean() | |
def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False): | |
"""Calculate SSIM (structural similarity). | |
Ref: | |
Image quality assessment: From error visibility to structural similarity | |
The results are the same as that of the official released MATLAB code in | |
https://ece.uwaterloo.ca/~z70wang/research/ssim/. | |
For three-channel images, SSIM is calculated for each channel and then | |
averaged. | |
Args: | |
img1 (ndarray): Images with range [0, 255]. | |
img2 (ndarray): Images with range [0, 255]. | |
crop_border (int): Cropped pixels in each edge of an image. These | |
pixels are not involved in the SSIM calculation. | |
input_order (str): Whether the input order is 'HWC' or 'CHW'. | |
Default: 'HWC'. | |
test_y_channel (bool): Test on Y channel of YCbCr. Default: False. | |
Returns: | |
float: ssim result. | |
""" | |
assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') | |
if input_order not in ['HWC', 'CHW']: | |
raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') | |
img1 = reorder_image(img1, input_order=input_order) | |
img2 = reorder_image(img2, input_order=input_order) | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
if crop_border != 0: | |
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] | |
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] | |
if test_y_channel: | |
img1 = to_y_channel(img1) | |
img2 = to_y_channel(img2) | |
ssims = [] | |
for i in range(img1.shape[2]): | |
ssims.append(_ssim(img1[..., i], img2[..., i])) | |
return np.array(ssims).mean() | |