Xueqing Wu
init
e20ef71
raw
history blame
12.4 kB
import inspect
import json
import os
import random
from typing import Literal, cast
import gradio as gr
import torch
from PIL import Image
from gradio.data_classes import InterfaceTypes
from gradio.flagging import CSVLogger
from torchvision import transforms
from transformers import AutoTokenizer, LlamaForCausalLM
from trace_exec import run_program_with_trace, CompileTimeError
from vision_processes import load_models
print("-" * 10, "Loading models...")
load_models()
with open('joint.prompt') as f:
prompt_template = f.read().strip()
INPUT_TYPE = 'image'
OUTPUT_TYPE = 'str'
SIGNATURE = f'def execute_command({INPUT_TYPE}) -> {OUTPUT_TYPE}:'
def generate(model, input_text):
torch.cuda.empty_cache()
print("-" * 10, "Before loading LLM:")
print(torch.cuda.memory_summary())
dtype = os.environ.get("CODELLAMA_DTYPE")
assert dtype in ['bfloat16', '8bit', '4bit', ]
tokenizer = AutoTokenizer.from_pretrained(model)
model = LlamaForCausalLM.from_pretrained(
model,
device_map="auto",
load_in_8bit=dtype == "8bit",
load_in_4bit=dtype == "4bit",
torch_dtype=torch.bfloat16 if dtype == "bfloat16" else None,
)
print("-" * 10, "LLM loaded:")
print(model)
print(torch.cuda.memory_summary())
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
generated_ids = model.generate(
input_ids.to('cuda'), max_new_tokens=256, stop_strings=["\n\n"], do_sample=False, tokenizer=tokenizer
)
generated_ids = generated_ids[0][input_ids.shape[1]:]
text = tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
del model
torch.cuda.empty_cache()
print("-" * 10, "After loading LLM:")
print(torch.cuda.memory_summary())
return text
def to_custom_trace(result, error, traced):
if traced is None:
assert isinstance(error, CompileTimeError)
traced = 'Compile Error'
return "-> {}\n\n--- Trace\n\n{}".format(result, traced)
def answer_from_trace(x):
assert x.startswith("->")
return x[2:].splitlines()[0].strip()
def debug(image, question, code, traced_info):
# critic
prompt = f"# Given an image: {question}\n{code}\n\n{traced_info}\n\n# Program is"
print("--- For debug: critic prompt is ---")
print(prompt)
print("---\n")
critic_out = generate("VDebugger/VDebugger-critic-generalist-7B", prompt)
incorrect = critic_out.strip().startswith('wrong')
critic_out = "# Program is" + critic_out
if not incorrect:
yield code, traced_info, critic_out, "N/A", "N/A", answer_from_trace(traced_info)
return
else:
yield code, traced_info, critic_out, "RUNNING IN PROGRESS...", "", ""
# refiner
critic_code = ('def execute_command' + critic_out.split('def execute_command')[1]).strip()
if '# Program is' in code:
critic_code = critic_code.split("# Program is")[0].strip() # errr, an awkward fix
prompt = f"# Given an image: {question}\n{critic_code}\n\n{traced_info}\n\n# Correction"
print("--- For debug: refiner prompt is ---")
print(prompt)
print("---\n")
refiner_out = generate("VDebugger/VDebugger-refiner-generalist-7B", prompt).strip()
yield code, traced_info, critic_out, refiner_out, "RUNNING IN PROGRESS...", ""
# execute (again)
result, error, traced = run_program_with_trace(refiner_out, image, INPUT_TYPE, OUTPUT_TYPE)
traced_info_2 = to_custom_trace(result, error, traced)
yield code, traced_info, critic_out, refiner_out, traced_info_2, answer_from_trace(traced_info_2)
def predict(image, question):
if image is None:
gr.Warning("Please provide an image", duration=5)
return
image = transforms.Compose([transforms.ToTensor()])(image)
question = question.strip()
if question == "":
gr.Warning("Please provide a question", duration=5)
return
# codellama
prompt = prompt_template.replace("INSERT_QUERY_HERE", f"Given an image: {question}\n{SIGNATURE}")
code = generate("codellama/CodeLlama-7b-Python-hf", prompt)
code = (SIGNATURE + code).strip()
yield code, "RUNNING IN PROGRESS...", "", "", "", ""
# execute
result, error, traced = run_program_with_trace(code, image, INPUT_TYPE, OUTPUT_TYPE)
traced_info = to_custom_trace(result, error, traced)
yield code, traced_info, "RUNNING IN PROGRESS...", "", "", ""
for tup in debug(image, question, code, traced_info):
yield tup
return
def re_debug(image, question, code, traced_info):
if code is None or code == "" or traced_info is None or traced_info == "":
gr.Warning("No prior debugging round", duration=5)
return
yield code, traced_info, "RUNNING IN PROGRESS...", "", "", ""
for tup in debug(image, question, code, traced_info):
yield tup
return
DESCRIPTION = """# VDebugger
| [Paper](https://arxiv.org/abs/2406.13444) | [Project](https://shirley-wu.github.io/vdebugger/) | [Code](https://github.com/shirley-wu/vdebugger/) | [Models and Data](https://huggingface.co/VDebugger) |
**VDebugger** is a novel critic-refiner framework trained to localize and debug *visual programs* by tracking execution step by step. In this demo, we show the visual programs, the outputs from both the critic and the refiner, as well as the final result.
**Warning:** Reduced performance and accuracy may be observed. Due to resource limitation of huggingface spaces, this demo runs Llama inference in 4-bit quantization and uses smaller foundation VLMs. For full capacity, please use the original code."""
class MyInterface(gr.Interface):
def __init__(self):
super(gr.Interface, self).__init__(
title=None,
theme=None,
analytics_enabled=None,
mode="tabbed_interface",
css=None,
js=None,
head=None,
)
self.interface_type = InterfaceTypes.STANDARD
self.description = DESCRIPTION
self.cache_examples = None
self.examples_per_page = 5
self.example_labels = None
self.batch = False
self.live = False
self.api_name = "predict"
self.max_batch_size = 4
self.concurrency_limit = 'default'
self.show_progress = "full"
self.allow_flagging = 'auto'
self.flagging_options = [("Flag", ""), ]
self.flagging_callback = CSVLogger()
self.flagging_dir = 'flagged'
# Load examples
with open('examples/questions.json') as f:
example_questions = json.load(f)
self.examples = []
for question in example_questions:
self.examples.append([
Image.open('examples/{}.jpg'.format(question['imageId'])), question['question'],
])
def load_random_example():
image, question = random.choice(self.examples)
return image, question, "", "", "", "", "", ""
# Render the Gradio UI
with self:
self.render_title_description()
with gr.Row():
image = gr.Image(label="Image", type="pil", width="30%", scale=1)
question = gr.Textbox(label="Question", scale=2)
with gr.Row():
_clear_btn = gr.ClearButton(value="Clear", variant="secondary")
_random_eg_btn = gr.Button("Random Example Input")
_submit_btn = gr.Button("Submit", variant="primary")
if inspect.isgeneratorfunction(predict) or inspect.isasyncgenfunction(predict):
_stop1_btn = gr.Button("Stop", variant="stop", visible=False)
_redebug_btn = gr.Button("Debug for Another Round", variant="primary")
if inspect.isgeneratorfunction(re_debug) or inspect.isasyncgenfunction(re_debug):
_stop2_btn = gr.Button("Stop", variant="stop", visible=False)
with gr.Row():
o1 = gr.Textbox(label="No debugging: program")
o2 = gr.Textbox(label="No debugging: execution")
with gr.Row():
o3 = gr.Textbox(label="VDebugger: critic")
o4 = gr.Textbox(label="VDebugger: refiner")
with gr.Row():
o5 = gr.Textbox(label="VDebugger: execution")
o6 = gr.Textbox(label="VDebugger: final answer")
question.submit(fn=predict, inputs=[image, question], outputs=[o1, o2, o3, o4, o5, o6])
_random_eg_btn.click(fn=load_random_example, outputs=[image, question, o1, o2, o3, o4, o5, o6])
async def cleanup():
return [gr.Button(visible=True), gr.Button(visible=False)]
# Setup redebug event
triggers = [_redebug_btn.click, ]
extra_output = [_redebug_btn, _stop2_btn]
predict_event = gr.on(
triggers,
gr.utils.async_lambda(
lambda: (
gr.Button(visible=False),
gr.Button(visible=True),
)
),
inputs=None,
outputs=[_redebug_btn, _stop2_btn],
queue=False,
show_api=False,
).then(
re_debug,
[image, question, o4, o5],
[o1, o2, o3, o4, o5, o6],
api_name=self.api_name,
scroll_to_output=False,
preprocess=not (self.api_mode),
postprocess=not (self.api_mode),
batch=self.batch,
max_batch_size=self.max_batch_size,
concurrency_limit=self.concurrency_limit,
show_progress=cast(
Literal["full", "minimal", "hidden"], self.show_progress
),
)
redebug_event = predict_event.then(
cleanup,
inputs=None,
outputs=extra_output, # type: ignore
queue=False,
show_api=False,
)
_stop2_btn.click(
cleanup,
inputs=None,
outputs=[_redebug_btn, _stop2_btn],
cancels=predict_event,
queue=False,
show_api=False,
)
# Setup submit event
triggers = [_submit_btn.click, question.submit, ]
extra_output = [_submit_btn, _stop1_btn]
predict_event = gr.on(
triggers,
gr.utils.async_lambda(
lambda: (
gr.Button(visible=False),
gr.Button(visible=True),
)
),
inputs=None,
outputs=[_submit_btn, _stop1_btn],
queue=False,
show_api=False,
).then(
predict,
[image, question],
[o1, o2, o3, o4, o5, o6],
api_name=self.api_name,
scroll_to_output=False,
preprocess=not (self.api_mode),
postprocess=not (self.api_mode),
batch=self.batch,
max_batch_size=self.max_batch_size,
concurrency_limit=self.concurrency_limit,
show_progress=cast(
Literal["full", "minimal", "hidden"], self.show_progress
),
)
submit_event = predict_event.then(
cleanup,
inputs=None,
outputs=extra_output, # type: ignore
queue=False,
show_api=False,
)
_stop1_btn.click(
cleanup,
inputs=None,
outputs=[_submit_btn, _stop1_btn],
cancels=predict_event,
queue=False,
show_api=False,
)
# Finally borrow Interface stuff
self.input_components = [image, question]
self.output_components = [o1, o2, o3, o4, o5, o6]
self.fn = predict
self.attach_clear_events(_clear_btn, None)
self.render_examples()
if __name__ == "__main__":
MyInterface().launch(share=os.environ.get("SHARE", '') != "")