Spaces:
Running
Running
import os | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch._utils | |
from .ocr import SpatialOCR_Module, SpatialGather_Module | |
from .resnetv1b import BasicBlockV1b, BottleneckV1b | |
relu_inplace = True | |
class HighResolutionModule(nn.Module): | |
def __init__(self, num_branches, blocks, num_blocks, num_inchannels, | |
num_channels, fuse_method,multi_scale_output=True, | |
norm_layer=nn.BatchNorm2d, align_corners=True): | |
super(HighResolutionModule, self).__init__() | |
self._check_branches(num_branches, num_blocks, num_inchannels, num_channels) | |
self.num_inchannels = num_inchannels | |
self.fuse_method = fuse_method | |
self.num_branches = num_branches | |
self.norm_layer = norm_layer | |
self.align_corners = align_corners | |
self.multi_scale_output = multi_scale_output | |
self.branches = self._make_branches( | |
num_branches, blocks, num_blocks, num_channels) | |
self.fuse_layers = self._make_fuse_layers() | |
self.relu = nn.ReLU(inplace=relu_inplace) | |
def _check_branches(self, num_branches, num_blocks, num_inchannels, num_channels): | |
if num_branches != len(num_blocks): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( | |
num_branches, len(num_blocks)) | |
raise ValueError(error_msg) | |
if num_branches != len(num_channels): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( | |
num_branches, len(num_channels)) | |
raise ValueError(error_msg) | |
if num_branches != len(num_inchannels): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( | |
num_branches, len(num_inchannels)) | |
raise ValueError(error_msg) | |
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, | |
stride=1): | |
downsample = None | |
if stride != 1 or \ | |
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.num_inchannels[branch_index], | |
num_channels[branch_index] * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
self.norm_layer(num_channels[branch_index] * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.num_inchannels[branch_index], | |
num_channels[branch_index], stride, | |
downsample=downsample, norm_layer=self.norm_layer)) | |
self.num_inchannels[branch_index] = \ | |
num_channels[branch_index] * block.expansion | |
for i in range(1, num_blocks[branch_index]): | |
layers.append(block(self.num_inchannels[branch_index], | |
num_channels[branch_index], | |
norm_layer=self.norm_layer)) | |
return nn.Sequential(*layers) | |
def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
branches = [] | |
for i in range(num_branches): | |
branches.append( | |
self._make_one_branch(i, block, num_blocks, num_channels)) | |
return nn.ModuleList(branches) | |
def _make_fuse_layers(self): | |
if self.num_branches == 1: | |
return None | |
num_branches = self.num_branches | |
num_inchannels = self.num_inchannels | |
fuse_layers = [] | |
for i in range(num_branches if self.multi_scale_output else 1): | |
fuse_layer = [] | |
for j in range(num_branches): | |
if j > i: | |
fuse_layer.append(nn.Sequential( | |
nn.Conv2d(in_channels=num_inchannels[j], | |
out_channels=num_inchannels[i], | |
kernel_size=1, | |
bias=False), | |
self.norm_layer(num_inchannels[i]))) | |
elif j == i: | |
fuse_layer.append(None) | |
else: | |
conv3x3s = [] | |
for k in range(i - j): | |
if k == i - j - 1: | |
num_outchannels_conv3x3 = num_inchannels[i] | |
conv3x3s.append(nn.Sequential( | |
nn.Conv2d(num_inchannels[j], | |
num_outchannels_conv3x3, | |
kernel_size=3, stride=2, padding=1, bias=False), | |
self.norm_layer(num_outchannels_conv3x3))) | |
else: | |
num_outchannels_conv3x3 = num_inchannels[j] | |
conv3x3s.append(nn.Sequential( | |
nn.Conv2d(num_inchannels[j], | |
num_outchannels_conv3x3, | |
kernel_size=3, stride=2, padding=1, bias=False), | |
self.norm_layer(num_outchannels_conv3x3), | |
nn.ReLU(inplace=relu_inplace))) | |
fuse_layer.append(nn.Sequential(*conv3x3s)) | |
fuse_layers.append(nn.ModuleList(fuse_layer)) | |
return nn.ModuleList(fuse_layers) | |
def get_num_inchannels(self): | |
return self.num_inchannels | |
def forward(self, x): | |
if self.num_branches == 1: | |
return [self.branches[0](x[0])] | |
for i in range(self.num_branches): | |
x[i] = self.branches[i](x[i]) | |
x_fuse = [] | |
for i in range(len(self.fuse_layers)): | |
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) | |
for j in range(1, self.num_branches): | |
if i == j: | |
y = y + x[j] | |
elif j > i: | |
width_output = x[i].shape[-1] | |
height_output = x[i].shape[-2] | |
y = y + F.interpolate( | |
self.fuse_layers[i][j](x[j]), | |
size=[height_output, width_output], | |
mode='bilinear', align_corners=self.align_corners) | |
else: | |
y = y + self.fuse_layers[i][j](x[j]) | |
x_fuse.append(self.relu(y)) | |
return x_fuse | |
class HighResolutionNet(nn.Module): | |
def __init__(self, width, num_classes, ocr_width=256, small=False, | |
norm_layer=nn.BatchNorm2d, align_corners=True, opt=None): | |
super(HighResolutionNet, self).__init__() | |
self.opt = opt | |
self.norm_layer = norm_layer | |
self.width = width | |
self.ocr_width = ocr_width | |
self.ocr_on = ocr_width > 0 | |
self.align_corners = align_corners | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn1 = norm_layer(64) | |
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn2 = norm_layer(64) | |
self.relu = nn.ReLU(inplace=relu_inplace) | |
num_blocks = 2 if small else 4 | |
stage1_num_channels = 64 | |
self.layer1 = self._make_layer(BottleneckV1b, 64, stage1_num_channels, blocks=num_blocks) | |
stage1_out_channel = BottleneckV1b.expansion * stage1_num_channels | |
self.stage2_num_branches = 2 | |
num_channels = [width, 2 * width] | |
num_inchannels = [ | |
num_channels[i] * BasicBlockV1b.expansion for i in range(len(num_channels))] | |
self.transition1 = self._make_transition_layer( | |
[stage1_out_channel], num_inchannels) | |
self.stage2, pre_stage_channels = self._make_stage( | |
BasicBlockV1b, num_inchannels=num_inchannels, num_modules=1, num_branches=self.stage2_num_branches, | |
num_blocks=2 * [num_blocks], num_channels=num_channels) | |
self.stage3_num_branches = 3 | |
num_channels = [width, 2 * width, 4 * width] | |
num_inchannels = [ | |
num_channels[i] * BasicBlockV1b.expansion for i in range(len(num_channels))] | |
self.transition2 = self._make_transition_layer( | |
pre_stage_channels, num_inchannels) | |
self.stage3, pre_stage_channels = self._make_stage( | |
BasicBlockV1b, num_inchannels=num_inchannels, | |
num_modules=3 if small else 4, num_branches=self.stage3_num_branches, | |
num_blocks=3 * [num_blocks], num_channels=num_channels) | |
self.stage4_num_branches = 4 | |
num_channels = [width, 2 * width, 4 * width, 8 * width] | |
num_inchannels = [ | |
num_channels[i] * BasicBlockV1b.expansion for i in range(len(num_channels))] | |
self.transition3 = self._make_transition_layer( | |
pre_stage_channels, num_inchannels) | |
self.stage4, pre_stage_channels = self._make_stage( | |
BasicBlockV1b, num_inchannels=num_inchannels, num_modules=2 if small else 3, | |
num_branches=self.stage4_num_branches, | |
num_blocks=4 * [num_blocks], num_channels=num_channels) | |
if self.ocr_on: | |
last_inp_channels = np.int(np.sum(pre_stage_channels)) | |
ocr_mid_channels = 2 * ocr_width | |
ocr_key_channels = ocr_width | |
self.conv3x3_ocr = nn.Sequential( | |
nn.Conv2d(last_inp_channels, ocr_mid_channels, | |
kernel_size=3, stride=1, padding=1), | |
norm_layer(ocr_mid_channels), | |
nn.ReLU(inplace=relu_inplace), | |
) | |
self.ocr_gather_head = SpatialGather_Module(num_classes) | |
self.ocr_distri_head = SpatialOCR_Module(in_channels=ocr_mid_channels, | |
key_channels=ocr_key_channels, | |
out_channels=ocr_mid_channels, | |
scale=1, | |
dropout=0.05, | |
norm_layer=norm_layer, | |
align_corners=align_corners, opt=opt) | |
def _make_transition_layer( | |
self, num_channels_pre_layer, num_channels_cur_layer): | |
num_branches_cur = len(num_channels_cur_layer) | |
num_branches_pre = len(num_channels_pre_layer) | |
transition_layers = [] | |
for i in range(num_branches_cur): | |
if i < num_branches_pre: | |
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
transition_layers.append(nn.Sequential( | |
nn.Conv2d(num_channels_pre_layer[i], | |
num_channels_cur_layer[i], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False), | |
self.norm_layer(num_channels_cur_layer[i]), | |
nn.ReLU(inplace=relu_inplace))) | |
else: | |
transition_layers.append(None) | |
else: | |
conv3x3s = [] | |
for j in range(i + 1 - num_branches_pre): | |
inchannels = num_channels_pre_layer[-1] | |
outchannels = num_channels_cur_layer[i] \ | |
if j == i - num_branches_pre else inchannels | |
conv3x3s.append(nn.Sequential( | |
nn.Conv2d(inchannels, outchannels, | |
kernel_size=3, stride=2, padding=1, bias=False), | |
self.norm_layer(outchannels), | |
nn.ReLU(inplace=relu_inplace))) | |
transition_layers.append(nn.Sequential(*conv3x3s)) | |
return nn.ModuleList(transition_layers) | |
def _make_layer(self, block, inplanes, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
self.norm_layer(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(inplanes, planes, stride, | |
downsample=downsample, norm_layer=self.norm_layer)) | |
inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(inplanes, planes, norm_layer=self.norm_layer)) | |
return nn.Sequential(*layers) | |
def _make_stage(self, block, num_inchannels, | |
num_modules, num_branches, num_blocks, num_channels, | |
fuse_method='SUM', | |
multi_scale_output=True): | |
modules = [] | |
for i in range(num_modules): | |
# multi_scale_output is only used last module | |
if not multi_scale_output and i == num_modules - 1: | |
reset_multi_scale_output = False | |
else: | |
reset_multi_scale_output = True | |
modules.append( | |
HighResolutionModule(num_branches, | |
block, | |
num_blocks, | |
num_inchannels, | |
num_channels, | |
fuse_method, | |
reset_multi_scale_output, | |
norm_layer=self.norm_layer, | |
align_corners=self.align_corners) | |
) | |
num_inchannels = modules[-1].get_num_inchannels() | |
return nn.Sequential(*modules), num_inchannels | |
def forward(self, x, mask=None, additional_features=None): | |
hrnet_feats = self.compute_hrnet_feats(x, additional_features) | |
if not self.ocr_on: | |
return hrnet_feats, | |
ocr_feats = self.conv3x3_ocr(hrnet_feats) | |
mask = nn.functional.interpolate(mask, size=ocr_feats.size()[2:], mode='bilinear', align_corners=True) | |
context = self.ocr_gather_head(ocr_feats, mask) | |
ocr_feats = self.ocr_distri_head(ocr_feats, context) | |
return ocr_feats, | |
def compute_hrnet_feats(self, x, additional_features, return_list=False): | |
x = self.compute_pre_stage_features(x, additional_features) | |
x = self.layer1(x) | |
x_list = [] | |
for i in range(self.stage2_num_branches): | |
if self.transition1[i] is not None: | |
x_list.append(self.transition1[i](x)) | |
else: | |
x_list.append(x) | |
y_list = self.stage2(x_list) | |
x_list = [] | |
for i in range(self.stage3_num_branches): | |
if self.transition2[i] is not None: | |
if i < self.stage2_num_branches: | |
x_list.append(self.transition2[i](y_list[i])) | |
else: | |
x_list.append(self.transition2[i](y_list[-1])) | |
else: | |
x_list.append(y_list[i]) | |
y_list = self.stage3(x_list) | |
x_list = [] | |
for i in range(self.stage4_num_branches): | |
if self.transition3[i] is not None: | |
if i < self.stage3_num_branches: | |
x_list.append(self.transition3[i](y_list[i])) | |
else: | |
x_list.append(self.transition3[i](y_list[-1])) | |
else: | |
x_list.append(y_list[i]) | |
x = self.stage4(x_list) | |
if return_list: | |
return x | |
# Upsampling | |
x0_h, x0_w = x[0].size(2), x[0].size(3) | |
x1 = F.interpolate(x[1], size=(x0_h, x0_w), | |
mode='bilinear', align_corners=self.align_corners) | |
x2 = F.interpolate(x[2], size=(x0_h, x0_w), | |
mode='bilinear', align_corners=self.align_corners) | |
x3 = F.interpolate(x[3], size=(x0_h, x0_w), | |
mode='bilinear', align_corners=self.align_corners) | |
return torch.cat([x[0], x1, x2, x3], 1) | |
def compute_pre_stage_features(self, x, additional_features): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
if additional_features is not None: | |
x = x + additional_features | |
x = self.conv2(x) | |
x = self.bn2(x) | |
return self.relu(x) | |
def load_pretrained_weights(self, pretrained_path=''): | |
model_dict = self.state_dict() | |
if not os.path.exists(pretrained_path): | |
print(f'\nFile "{pretrained_path}" does not exist.') | |
print('You need to specify the correct path to the pre-trained weights.\n' | |
'You can download the weights for HRNet from the repository:\n' | |
'https://github.com/HRNet/HRNet-Image-Classification') | |
exit(1) | |
pretrained_dict = torch.load(pretrained_path, map_location={'cuda:0': 'cpu'}) | |
pretrained_dict = {k.replace('last_layer', 'aux_head').replace('model.', ''): v for k, v in | |
pretrained_dict.items()} | |
params_count = len(pretrained_dict) | |
pretrained_dict = {k: v for k, v in pretrained_dict.items() | |
if k in model_dict.keys()} | |
# print(f'Loaded {len(pretrained_dict)} of {params_count} pretrained parameters for HRNet') | |
model_dict.update(pretrained_dict) | |
self.load_state_dict(model_dict) | |