Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
GLUON_RESNET_TORCH_HUB = 'rwightman/pytorch-pretrained-gluonresnet' | |
class BasicBlockV1b(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, | |
previous_dilation=1, norm_layer=nn.BatchNorm2d): | |
super(BasicBlockV1b, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, | |
padding=dilation, dilation=dilation, bias=False) | |
self.bn1 = norm_layer(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, | |
padding=previous_dilation, dilation=previous_dilation, bias=False) | |
self.bn2 = norm_layer(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out = out + residual | |
out = self.relu(out) | |
return out | |
class BottleneckV1b(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, | |
previous_dilation=1, norm_layer=nn.BatchNorm2d): | |
super(BottleneckV1b, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = norm_layer(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
padding=dilation, dilation=dilation, bias=False) | |
self.bn2 = norm_layer(planes) | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) | |
self.bn3 = norm_layer(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out = out + residual | |
out = self.relu(out) | |
return out | |
class ResNetV1b(nn.Module): | |
""" Pre-trained ResNetV1b Model, which produces the strides of 8 featuremaps at conv5. | |
Parameters | |
---------- | |
block : Block | |
Class for the residual block. Options are BasicBlockV1, BottleneckV1. | |
layers : list of int | |
Numbers of layers in each block | |
classes : int, default 1000 | |
Number of classification classes. | |
dilated : bool, default False | |
Applying dilation strategy to pretrained ResNet yielding a stride-8 model, | |
typically used in Semantic Segmentation. | |
norm_layer : object | |
Normalization layer used (default: :class:`nn.BatchNorm2d`) | |
deep_stem : bool, default False | |
Whether to replace the 7x7 conv1 with 3 3x3 convolution layers. | |
avg_down : bool, default False | |
Whether to use average pooling for projection skip connection between stages/downsample. | |
final_drop : float, default 0.0 | |
Dropout ratio before the final classification layer. | |
Reference: | |
- He, Kaiming, et al. "Deep residual learning for image recognition." | |
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. | |
- Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." | |
""" | |
def __init__(self, block, layers, classes=1000, dilated=True, deep_stem=False, stem_width=32, | |
avg_down=False, final_drop=0.0, norm_layer=nn.BatchNorm2d): | |
self.inplanes = stem_width*2 if deep_stem else 64 | |
super(ResNetV1b, self).__init__() | |
if not deep_stem: | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
else: | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False), | |
norm_layer(stem_width), | |
nn.ReLU(True), | |
nn.Conv2d(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False), | |
norm_layer(stem_width), | |
nn.ReLU(True), | |
nn.Conv2d(stem_width, 2*stem_width, kernel_size=3, stride=1, padding=1, bias=False) | |
) | |
self.bn1 = norm_layer(self.inplanes) | |
self.relu = nn.ReLU(True) | |
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0], avg_down=avg_down, | |
norm_layer=norm_layer) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, avg_down=avg_down, | |
norm_layer=norm_layer) | |
if dilated: | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2, | |
avg_down=avg_down, norm_layer=norm_layer) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4, | |
avg_down=avg_down, norm_layer=norm_layer) | |
else: | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, | |
avg_down=avg_down, norm_layer=norm_layer) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, | |
avg_down=avg_down, norm_layer=norm_layer) | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.drop = None | |
if final_drop > 0.0: | |
self.drop = nn.Dropout(final_drop) | |
self.fc = nn.Linear(512 * block.expansion, classes) | |
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, | |
avg_down=False, norm_layer=nn.BatchNorm2d): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = [] | |
if avg_down: | |
if dilation == 1: | |
downsample.append( | |
nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False) | |
) | |
else: | |
downsample.append( | |
nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False) | |
) | |
downsample.extend([ | |
nn.Conv2d(self.inplanes, out_channels=planes * block.expansion, | |
kernel_size=1, stride=1, bias=False), | |
norm_layer(planes * block.expansion) | |
]) | |
downsample = nn.Sequential(*downsample) | |
else: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, out_channels=planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
norm_layer(planes * block.expansion) | |
) | |
layers = [] | |
if dilation in (1, 2): | |
layers.append(block(self.inplanes, planes, stride, dilation=1, downsample=downsample, | |
previous_dilation=dilation, norm_layer=norm_layer)) | |
elif dilation == 4: | |
layers.append(block(self.inplanes, planes, stride, dilation=2, downsample=downsample, | |
previous_dilation=dilation, norm_layer=norm_layer)) | |
else: | |
raise RuntimeError("=> unknown dilation size: {}".format(dilation)) | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append(block(self.inplanes, planes, dilation=dilation, | |
previous_dilation=dilation, norm_layer=norm_layer)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.avgpool(x) | |
x = x.view(x.size(0), -1) | |
if self.drop is not None: | |
x = self.drop(x) | |
x = self.fc(x) | |
return x | |
def _safe_state_dict_filtering(orig_dict, model_dict_keys): | |
filtered_orig_dict = {} | |
for k, v in orig_dict.items(): | |
if k in model_dict_keys: | |
filtered_orig_dict[k] = v | |
else: | |
print(f"[ERROR] Failed to load <{k}> in backbone") | |
return filtered_orig_dict | |
def resnet34_v1b(pretrained=False, **kwargs): | |
model = ResNetV1b(BasicBlockV1b, [3, 4, 6, 3], **kwargs) | |
if pretrained: | |
model_dict = model.state_dict() | |
filtered_orig_dict = _safe_state_dict_filtering( | |
torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet34_v1b', pretrained=True).state_dict(), | |
model_dict.keys() | |
) | |
model_dict.update(filtered_orig_dict) | |
model.load_state_dict(model_dict) | |
return model | |
def resnet50_v1s(pretrained=False, **kwargs): | |
model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, stem_width=64, **kwargs) | |
if pretrained: | |
model_dict = model.state_dict() | |
filtered_orig_dict = _safe_state_dict_filtering( | |
torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet50_v1s', pretrained=True).state_dict(), | |
model_dict.keys() | |
) | |
model_dict.update(filtered_orig_dict) | |
model.load_state_dict(model_dict) | |
return model | |
def resnet101_v1s(pretrained=False, **kwargs): | |
model = ResNetV1b(BottleneckV1b, [3, 4, 23, 3], deep_stem=True, stem_width=64, **kwargs) | |
if pretrained: | |
model_dict = model.state_dict() | |
filtered_orig_dict = _safe_state_dict_filtering( | |
torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet101_v1s', pretrained=True).state_dict(), | |
model_dict.keys() | |
) | |
model_dict.update(filtered_orig_dict) | |
model.load_state_dict(model_dict) | |
return model | |
def resnet152_v1s(pretrained=False, **kwargs): | |
model = ResNetV1b(BottleneckV1b, [3, 8, 36, 3], deep_stem=True, stem_width=64, **kwargs) | |
if pretrained: | |
model_dict = model.state_dict() | |
filtered_orig_dict = _safe_state_dict_filtering( | |
torch.hub.load(GLUON_RESNET_TORCH_HUB, 'gluon_resnet152_v1s', pretrained=True).state_dict(), | |
model_dict.keys() | |
) | |
model_dict.update(filtered_orig_dict) | |
model.load_state_dict(model_dict) | |
return model | |