StyleTTS2_Studio / inference.py
Wismut's picture
switched to openphonemizer
6c68b83
import yaml
import random
import librosa
import numpy as np
import torch
import torchaudio
from openphonemizer import OpenPhonemizer
from collections import OrderedDict
from munch import Munch
from nltk.tokenize import word_tokenize
from cached_path import cached_path
# Local or project imports
from models import *
from Utils.PLBERT.util import load_plbert
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
# -----------------------------------------------------------------------------
# SEEDS AND DETERMINISM
# -----------------------------------------------------------------------------
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# -----------------------------------------------------------------------------
# CONSTANTS / CHARACTERS
# -----------------------------------------------------------------------------
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {symbols[i]: i for i in range(len(symbols))}
# -----------------------------------------------------------------------------
# TEXT CLEANER
# -----------------------------------------------------------------------------
class TextCleaner:
"""
Maps individual characters to their corresponding indices.
If an unknown character is found, it prints a warning.
"""
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
print(len(dicts))
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError:
print("CLEAN", text)
return indexes
textclenaer = TextCleaner()
# -----------------------------------------------------------------------------
# AUDIO PROCESSING
# -----------------------------------------------------------------------------
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300
)
mean, std = -4, 4
def preprocess(wave: np.ndarray) -> torch.Tensor:
"""
Convert a NumPy audio array into a normalized mel spectrogram tensor.
"""
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def length_to_mask(lengths: torch.Tensor) -> torch.Tensor:
"""
Return a boolean mask based on the lengths of each item in the batch.
"""
max_len = lengths.max()
mask = (
torch.arange(max_len).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
)
mask = torch.gt(mask + 1, lengths.unsqueeze(1))
return mask
# -----------------------------------------------------------------------------
# MISC UTILS
# -----------------------------------------------------------------------------
def recursive_munch(d):
"""
Recursively convert dictionaries to Munch objects.
"""
if isinstance(d, dict):
return Munch((k, recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [recursive_munch(v) for v in d]
else:
return d
def compute_style(path: str) -> torch.Tensor:
"""
Load an audio file, trim it, resample if needed, then
compute and return a style vector by passing through the style encoder
and predictor encoder.
"""
wave, sr = librosa.load(path, sr=24000)
audio, _ = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
# -----------------------------------------------------------------------------
# DEVICE SELECTION
# -----------------------------------------------------------------------------
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
# Optionally enable MPS if appropriate (commented out by default).
# device = "mps"
pass
# -----------------------------------------------------------------------------
# PHONEMIZER INITIALIZATION
# -----------------------------------------------------------------------------
global_phonemizer = OpenPhonemizer()
# -----------------------------------------------------------------------------
# LOAD CONFIG
# -----------------------------------------------------------------------------
config = yaml.safe_load(open("Utils/config.yml"))
# -----------------------------------------------------------------------------
# LOAD MODELS
# -----------------------------------------------------------------------------
ASR_config = config.get("ASR_config", False)
ASR_path = config.get("ASR_path", False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
F0_path = config.get("F0_path", False)
pitch_extractor = load_F0_models(F0_path)
BERT_path = config.get("PLBERT_dir", False)
plbert = load_plbert(BERT_path)
model_params = recursive_munch(config["model_params"])
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]
params_whole = torch.load(
str(
cached_path(
"hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth"
)
),
map_location="cpu",
)
params = params_whole["net"]
# Load model states
for key in model:
if key in params:
print(f"{key} loaded")
try:
model[key].load_state_dict(params[key])
except RuntimeError:
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model[key].load_state_dict(new_state_dict, strict=False)
_ = [model[key].eval() for key in model]
sampler = DiffusionSampler(
model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0),
clamp=False,
)
# -----------------------------------------------------------------------------
# INFERENCE
# -----------------------------------------------------------------------------
def inference(
text: str,
ref_s: torch.Tensor,
alpha: float = 0.3,
beta: float = 0.7,
diffusion_steps: int = 5,
embedding_scale: float = 1,
speed: float = 1.2,
):
"""
Perform TTS inference using StyleTTS2 architecture.
Args:
text (str): The input text to be synthesized.
ref_s (torch.Tensor): The reference style/predictor embedding.
alpha (float): Interpolation factor for the style encoder.
beta (float): Interpolation factor for the predictor encoder.
diffusion_steps (int): Number of diffusion steps.
embedding_scale (float): Scaling factor for the BERT embedding.
speed (float): Speed factor e.g. 1.2 will speed up the audio by 20%
Returns:
np.ndarray: Audio waveform (synthesized speech).
"""
text = text.strip()
# Phonemize
ps = global_phonemizer(text)
ps = word_tokenize(ps)
ps = " ".join(ps)
tokens = textclenaer(ps)
tokens.insert(0, 0) # Insert padding index at the start
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
# Text encoder
t_en = model.text_encoder(tokens, input_lengths, text_mask)
# BERT duration encoding
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
# Sampler for style
noise = torch.randn((1, 256)).unsqueeze(1).to(device)
s_pred = sampler(
noise=noise,
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s,
num_steps=diffusion_steps,
).squeeze(1)
# Split the style vector
s_style = s_pred[:, 128:]
s_ref = s_pred[:, :128]
# Interpolate with ref_s
s_ref = alpha * s_ref + (1 - alpha) * ref_s[:, :128]
s_style = beta * s_style + (1 - beta) * ref_s[:, 128:]
# Predictor
d = model.predictor.text_encoder(d_en, s_style, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
duration = duration / speed # change speed
# Create alignment
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pd = int(pred_dur[i].data)
pred_aln_trg[i, c_frame : c_frame + pd] = 1
c_frame += pd
# Encode prosody
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = model.predictor.F0Ntrain(en, s_style)
# ASR-based encoding
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = model.decoder(asr, F0_pred, N_pred, s_ref.squeeze().unsqueeze(0))
# Return waveform without the last 50 samples (as per original code)
return out.squeeze().cpu().numpy()[..., :-50]