Spaces:
Running
on
A10G
Running
on
A10G
Create app.py
#4
by
sup2
- opened
app.py
CHANGED
@@ -1,145 +1,7 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import cv2
|
4 |
import gradio as gr
|
5 |
-
import torch
|
6 |
-
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
7 |
-
from gfpgan.utils import GFPGANer
|
8 |
-
from realesrgan.utils import RealESRGANer
|
9 |
-
|
10 |
-
os.system("pip freeze")
|
11 |
-
# download weights
|
12 |
-
if not os.path.exists('realesr-general-x4v3.pth'):
|
13 |
-
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
14 |
-
if not os.path.exists('GFPGANv1.2.pth'):
|
15 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
|
16 |
-
if not os.path.exists('GFPGANv1.3.pth'):
|
17 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
|
18 |
-
if not os.path.exists('GFPGANv1.4.pth'):
|
19 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
|
20 |
-
if not os.path.exists('RestoreFormer.pth'):
|
21 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
|
22 |
-
if not os.path.exists('CodeFormer.pth'):
|
23 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
|
24 |
-
|
25 |
-
torch.hub.download_url_to_file(
|
26 |
-
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
|
27 |
-
'lincoln.jpg')
|
28 |
-
torch.hub.download_url_to_file(
|
29 |
-
'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
|
30 |
-
'AI-generate.jpg')
|
31 |
-
torch.hub.download_url_to_file(
|
32 |
-
'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
|
33 |
-
'Blake_Lively.jpg')
|
34 |
-
torch.hub.download_url_to_file(
|
35 |
-
'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
|
36 |
-
'10045.png')
|
37 |
-
|
38 |
-
# background enhancer with RealESRGAN
|
39 |
-
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
40 |
-
model_path = 'realesr-general-x4v3.pth'
|
41 |
-
half = True if torch.cuda.is_available() else False
|
42 |
-
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
43 |
-
|
44 |
-
os.makedirs('output', exist_ok=True)
|
45 |
-
|
46 |
-
|
47 |
-
# def inference(img, version, scale, weight):
|
48 |
-
def inference(img, version, scale):
|
49 |
-
# weight /= 100
|
50 |
-
print(img, version, scale)
|
51 |
-
try:
|
52 |
-
extension = os.path.splitext(os.path.basename(str(img)))[1]
|
53 |
-
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
54 |
-
if len(img.shape) == 3 and img.shape[2] == 4:
|
55 |
-
img_mode = 'RGBA'
|
56 |
-
elif len(img.shape) == 2: # for gray inputs
|
57 |
-
img_mode = None
|
58 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
59 |
-
else:
|
60 |
-
img_mode = None
|
61 |
-
|
62 |
-
h, w = img.shape[0:2]
|
63 |
-
if h < 300:
|
64 |
-
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
65 |
-
|
66 |
-
if version == 'v1.2':
|
67 |
-
face_enhancer = GFPGANer(
|
68 |
-
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
69 |
-
elif version == 'v1.3':
|
70 |
-
face_enhancer = GFPGANer(
|
71 |
-
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
72 |
-
elif version == 'v1.4':
|
73 |
-
face_enhancer = GFPGANer(
|
74 |
-
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
75 |
-
elif version == 'RestoreFormer':
|
76 |
-
face_enhancer = GFPGANer(
|
77 |
-
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
78 |
-
# elif version == 'CodeFormer':
|
79 |
-
# face_enhancer = GFPGANer(
|
80 |
-
# model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
81 |
-
|
82 |
-
try:
|
83 |
-
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
|
84 |
-
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
85 |
-
except RuntimeError as error:
|
86 |
-
print('Error', error)
|
87 |
-
|
88 |
-
try:
|
89 |
-
if scale != 2:
|
90 |
-
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
91 |
-
h, w = img.shape[0:2]
|
92 |
-
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
93 |
-
except Exception as error:
|
94 |
-
print('wrong scale input.', error)
|
95 |
-
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
96 |
-
extension = 'png'
|
97 |
-
else:
|
98 |
-
extension = 'jpg'
|
99 |
-
save_path = f'output/out.{extension}'
|
100 |
-
cv2.imwrite(save_path, output)
|
101 |
-
|
102 |
-
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
103 |
-
return output, save_path
|
104 |
-
except Exception as error:
|
105 |
-
print('global exception', error)
|
106 |
-
return None, None
|
107 |
-
|
108 |
-
|
109 |
-
title = "GFPGAN: Practical Face Restoration Algorithm"
|
110 |
-
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
|
111 |
-
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
|
112 |
-
To use it, simply upload your image.<br>
|
113 |
-
If GFPGAN is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends 😊
|
114 |
-
"""
|
115 |
-
article = r"""
|
116 |
-
|
117 |
-
[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
|
118 |
-
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
|
119 |
-
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
|
120 |
|
121 |
-
|
|
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
"""
|
126 |
-
demo = gr.Interface(
|
127 |
-
inference, [
|
128 |
-
gr.inputs.Image(type="filepath", label="Input"),
|
129 |
-
# gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", default='v1.4', label='version'),
|
130 |
-
gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", default='v1.4', label='version'),
|
131 |
-
gr.inputs.Number(label="Rescaling factor", default=2),
|
132 |
-
# gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', default=50)
|
133 |
-
], [
|
134 |
-
gr.outputs.Image(type="numpy", label="Output (The whole image)"),
|
135 |
-
gr.outputs.File(label="Download the output image")
|
136 |
-
],
|
137 |
-
title=title,
|
138 |
-
description=description,
|
139 |
-
article=article,
|
140 |
-
# examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50],
|
141 |
-
# ['10045.png', 'v1.4', 2, 50]]).launch()
|
142 |
-
examples=[['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2],
|
143 |
-
['10045.png', 'v1.4', 2]])
|
144 |
-
demo.queue(concurrency_count=4)
|
145 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
def greet(name):
|
4 |
+
return "Hello " + name + "!!"
|
5 |
|
6 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|