Spaces:
Sleeping
Sleeping
File size: 7,120 Bytes
6343888 c6e3370 6343888 926b5c5 6343888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
#### function to show map for loaction of the job
import time
import matplotlib.pyplot as plt
import streamlit as st
import seaborn as sns
import matplotlib as mpl
import plotly
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
from plotly.offline import iplot
from plotly.subplots import make_subplots
import plotly.figure_factory as ff
import pandas as pd
def map_bubble(df):
import requests
import urllib.parse
g =[]
for i in range(len(df.Location)):
if df.Location.loc[i].split(","):
g.append(df.Location.loc[i].split(",")[0])
else:
g.append(df.Location.loc[i])
df['new_loc']=g
if 'country' in df.columns:
df["full_location"] = df["new_loc"] + ", " +df["country"]
dict_cities = dict(df.full_location.value_counts())
else :
dict_cities = dict(df.new_loc.value_counts())
lat = []
lon = []
bubble_df = pd.DataFrame()
add=[]
val=[]
try:
for address in dict_cities.keys():
url = 'https://nominatim.openstreetmap.org/search/' + urllib.parse.quote(address) +'?format=json'
response = requests.get(url).json()
lat.append(response[0]["lat"])
lon.append(response[0]["lon"])
add.append(address)
val.append(dict_cities[address])
except:
pass
bubble_df['address'] =add
bubble_df['lat'] = lat
bubble_df['lon'] = lon
bubble_df['value'] = val
# import the library
import folium
# Make an empty map
m = folium.Map(location=[20,0], tiles="OpenStreetMap", zoom_start=2)
# add marker one by one on the map
for i in range(0,len(bubble_df)):
folium.Circle(
location=[bubble_df.iloc[i]['lat'], bubble_df.iloc[i]['lon']],
popup=bubble_df.iloc[i][['address','value']].values,
radius=float(bubble_df.iloc[i]['value'])*500,
color='#69b3a2',
fill=True,
fill_color='#69b3a2'
).add_to(m)
m
# Show the map again
return m
##########################
#########################
#### wuzzuf analysis
def wuzzuf_exp(df1):
top10_job_title = df1['Title'].value_counts()[:10]
fig1 = px.bar(y=top10_job_title.values,
x=top10_job_title.index,
color = top10_job_title.index,
color_discrete_sequence=px.colors.sequential.deep,
text=top10_job_title.values,
title= 'Top 10 Job Titles',
template= 'plotly_dark')
fig1.update_layout(height=500,width=500,
xaxis_title="Job Titles",
yaxis_title="count",
font = dict(size=17,family="Franklin Gothic"))
st.plotly_chart(fig1)
type_grouped = df1['Career_Level'].value_counts()
#e_type = ['Full-Time','Part-Time','Contract','Freelance']
e_type =dict(df1['Career_Level'].value_counts()).keys()
fig2 = px.bar(x = e_type, y = type_grouped.values,
color = type_grouped.index,
color_discrete_sequence=px.colors.sequential.dense,
template = 'plotly_dark',
text = type_grouped.values, title = 'Career Level Distribution')
fig2.update_layout( height=500, width=500,
xaxis_title="Career Level",
yaxis_title="count",
font = dict(size=17,family="Franklin Gothic"))
fig2.update_traces(width=0.5)
st.plotly_chart(fig2)
residence = df1['Location'].value_counts()
top10_employee_location = residence[:10]
fig3 = px.bar(y=top10_employee_location.values,
x=top10_employee_location.index,
color = top10_employee_location.index,
color_discrete_sequence=px.colors.sequential.deep,
text=top10_employee_location.values,
title= 'Top 10 Location of job',
template= 'plotly_dark')
fig3.update_layout(height=500,width=500,
xaxis_title="Location of job",
yaxis_title="count",
font = dict(size=17,family="Franklin Gothic"))
st.plotly_chart(fig3)
type_grouped = df1['Experience_Needed'].value_counts()
#e_type = ['Full-Time','Part-Time','Contract','Freelance']
e_type =dict(df1['Experience_Needed'].value_counts()).keys()
fig4 = px.bar(x = e_type, y = type_grouped.values,
color = type_grouped.index,
color_discrete_sequence=px.colors.sequential.dense,
template = 'plotly_dark',
text = type_grouped.values, title = ' Experience Level Distribution')
fig4.update_layout(height=500,width=500,
xaxis_title=" Experience Level (years)",
yaxis_title="count",
font = dict(size=17,family="Franklin Gothic"))
fig4.update_traces(width=0.5)
st.plotly_chart(fig4)
return
#########################
### linkedin analysis
def linkedin_exp(df1):
top10_job_title = df1['Title'].value_counts()[:10]
fig1 = px.bar(y=top10_job_title.values,
x=top10_job_title.index,
color = top10_job_title.index,
color_discrete_sequence=px.colors.sequential.deep,
text=top10_job_title.values,
title= 'Top 10 Job Titles',
template= 'plotly_dark')
fig1.update_layout(height=500,width=500,
xaxis_title="Job Titles",
yaxis_title="count",
font = dict(size=17,family="Franklin Gothic"))
st.plotly_chart(fig1)
type_grouped = df1['Employment type'].value_counts()
#e_type = ['Full-Time','Part-Time','Contract','Freelance']
e_type =dict(df1['Employment type'].value_counts()).keys()
fig2 = px.bar(x = e_type, y = type_grouped.values,
color = type_grouped.index,
color_discrete_sequence=px.colors.sequential.dense,
template = 'plotly_dark',
text = type_grouped.values, title = 'Employment type Distribution')
fig2.update_layout( height=500, width=500,
xaxis_title="Employment type",
yaxis_title="count",
font = dict(size=17,family="Franklin Gothic"))
fig2.update_traces(width=0.5)
st.plotly_chart(fig2)
residence = df1['Location'].value_counts()
top10_employee_location = residence[:10]
fig3 = px.bar(y=top10_employee_location.values,
x=top10_employee_location.index,
color = top10_employee_location.index,
color_discrete_sequence=px.colors.sequential.deep,
text=top10_employee_location.values,
title= 'Top 10 Location of job',
template= 'plotly_dark')
fig3.update_layout(height=500,width=500,
xaxis_title="Location of job",
yaxis_title="count",
font = dict(size=17,family="Franklin Gothic"))
st.plotly_chart(fig3)
type_grouped = df1['Seniority level'].value_counts()
#e_type = ['Full-Time','Part-Time','Contract','Freelance']
e_type =dict(df1['Seniority level'].value_counts()).keys()
fig4 = px.bar(x = e_type, y = type_grouped.values,
color = type_grouped.index,
color_discrete_sequence=px.colors.sequential.dense,
template = 'plotly_dark',
text = type_grouped.values, title = 'Seniority level Distribution')
fig4.update_layout(height=500,width=500,
xaxis_title="Seniority level",
yaxis_title="count",
font = dict(size=17,family="Franklin Gothic"))
fig4.update_traces(width=0.5)
st.plotly_chart(fig4)
return
|