Spaces:
Running
Running
title: Whisper Webui | |
emoji: ⚡ | |
colorFrom: pink | |
colorTo: purple | |
sdk: gradio | |
sdk_version: 3.3.1 | |
app_file: app.py | |
pinned: false | |
license: apache-2.0 | |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference | |
# Running Locally | |
To run this program locally, first install Python 3.9+ and Git. Then install Pytorch 10.1+ and all the other dependencies: | |
``` | |
pip install -r requirements.txt | |
``` | |
Finally, run the full version (no audio length restrictions) of the app: | |
``` | |
python app-full.py | |
``` | |
You can also run the CLI interface, which is similar to Whisper's own CLI but also supports the following additional arguments: | |
``` | |
python cli.py \ | |
[--vad {none,silero-vad,silero-vad-skip-gaps,silero-vad-expand-into-gaps,periodic-vad}] \ | |
[--vad_merge_window VAD_MERGE_WINDOW] \ | |
[--vad_max_merge_size VAD_MAX_MERGE_SIZE] \ | |
[--vad_padding VAD_PADDING] \ | |
[--vad_prompt_window VAD_PROMPT_WINDOW] | |
[--vad_parallel_devices COMMA_DELIMITED_DEVICES] | |
``` | |
In addition, you may also use URL's in addition to file paths as input. | |
``` | |
python cli.py --model large --vad silero-vad --language Japanese "https://www.youtube.com/watch?v=4cICErqqRSM" | |
``` | |
## Parallel Execution | |
You can also run both the Web-UI or the CLI on multiple GPUs in parallel, using the `vad_parallel_devices` option. This takes a comma-delimited list of | |
device IDs (0, 1, etc.) that Whisper should be distributed to and run on concurrently: | |
``` | |
python cli.py --model large --vad silero-vad --language Japanese --vad_parallel_devices 0,1 "https://www.youtube.com/watch?v=4cICErqqRSM" | |
``` | |
Note that this requires a VAD to function properly, otherwise only the first GPU will be used. Though you could use `period-vad` to avoid taking the hit | |
of running Silero-Vad, at a slight cost to accuracy. | |
This is achieved by creating N child processes (where N is the number of selected devices), where Whisper is run concurrently. In `app.py`, you can also | |
set the `vad_process_timeout` option, which configures the number of seconds until a process is killed due to inactivity, freeing RAM and video memory. | |
The default value is 30 minutes. | |
``` | |
python app.py --input_audio_max_duration -1 --vad_parallel_devices 0,1 --vad_process_timeout 3600 | |
``` | |
You may also use `vad_process_timeout` with a single device (`--vad_parallel_devices 0`), if you prefer to free video memory after a period of time. | |
# Docker | |
To run it in Docker, first install Docker and optionally the NVIDIA Container Toolkit in order to use the GPU. Then | |
check out this repository and build an image: | |
``` | |
sudo docker build -t whisper-webui:1 . | |
``` | |
You can then start the WebUI with GPU support like so: | |
``` | |
sudo docker run -d --gpus=all -p 7860:7860 whisper-webui:1 | |
``` | |
Leave out "--gpus=all" if you don't have access to a GPU with enough memory, and are fine with running it on the CPU only: | |
``` | |
sudo docker run -d -p 7860:7860 whisper-webui:1 | |
``` | |
## Caching | |
Note that the models themselves are currently not included in the Docker images, and will be downloaded on the demand. | |
To avoid this, bind the directory /root/.cache/whisper to some directory on the host (for instance /home/administrator/.cache/whisper), where you can (optionally) | |
prepopulate the directory with the different Whisper models. | |
``` | |
sudo docker run -d --gpus=all -p 7860:7860 --mount type=bind,source=/home/administrator/.cache/whisper,target=/root/.cache/whisper whisper-webui:1 | |
``` |