MidtermAgenticRAG / AgenticRAG /agentic_rag.py
acpotts's picture
modified app.py to contain graph
870be69
from langchain.tools.retriever import create_retriever_tool
from typing import Annotated, Literal, Sequence, TypedDict
from typing import Annotated, Sequence, TypedDict
from langchain_core.messages import BaseMessage
from langgraph.graph.message import add_messages
from langchain import hub
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from langgraph.prebuilt import tools_condition
from aimakerspace.vectordatabase import VectorDatabase
retriever_tool = create_retriever_tool(
retriever,
"retrieve_blog_posts",
"Search and return information about the responsible and ethical use of AI along with the development of policies and practices to protect civil rights and promote democratic values in the building, deployment, and government of automated systems.",
)
tools = [retriever_tool]
class AgentState(TypedDict):
# The add_messages function defines how an update should be processed
# Default is to replace. add_messages says "append"
messages: Annotated[Sequence[BaseMessage], add_messages]
### Edges
def grade_documents(state) -> Literal["generate", "rewrite"]:
"""
Determines whether the retrieved documents are relevant to the question.
Args:
state (messages): The current state
Returns:
str: A decision for whether the documents are relevant or not
"""
# Data model
class grade(BaseModel):
"""Binary score for relevance check."""
binary_score: str = Field(description="Relevance score 'yes' or 'no'")
# LLM
model = ChatOpenAI(temperature=0, model="gpt-4o-mini", streaming=True)
# LLM with tool and validation
llm_with_tool = model.with_structured_output(grade)
# Prompt
prompt = PromptTemplate(
template="""You are a grader assessing relevance of a retrieved document to a user question. \n
Here is the retrieved document: \n\n {context} \n\n
Here is the user question: {question} \n
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.""",
input_variables=["context", "question"],
)
# Chain
chain = prompt | llm_with_tool
messages = state["messages"]
last_message = messages[-1]
question = messages[0].content
docs = last_message.content
scored_result = chain.invoke({"question": question, "context": docs})
score = scored_result.binary_score
if score == "yes":
print("---DECISION: DOCS RELEVANT---")
return "generate"
else:
print("---DECISION: DOCS NOT RELEVANT---")
print(score)
return "rewrite"
### Nodes
def agent(state):
"""
Invokes the agent model to generate a response based on the current state. Given
the question, it will decide to retrieve using the retriever tool, or simply end.
Args:
state (messages): The current state
Returns:
dict: The updated state with the agent response appended to messages
"""
print("---CALL AGENT---")
messages = state["messages"]
model = ChatOpenAI(temperature=0, streaming=True, model="gpt-4o-mini")
model = model.bind_tools(tools)
response = model.invoke(messages)
# We return a list, because this will get added to the existing list
return {"messages": [response]}
def rewrite(state):
"""
Transform the query to produce a better question.
Args:
state (messages): The current state
Returns:
dict: The updated state with re-phrased question
"""
print("---TRANSFORM QUERY---")
messages = state["messages"]
question = messages[0].content
msg = [
HumanMessage(
content=f""" \n
Look at the input and try to reason about the underlying semantic intent / meaning. \n
Here is the initial question:
\n ------- \n
{question}
\n ------- \n
Formulate an improved question: """,
)
]
# Grader
model = ChatOpenAI(temperature=0, model="gpt-4o-mini", streaming=True)
response = model.invoke(msg)
return {"messages": [response]}
def generate(state):
"""
Generate answer
Args:
state (messages): The current state
Returns:
dict: The updated state with re-phrased question
"""
print("---GENERATE---")
messages = state["messages"]
question = messages[0].content
last_message = messages[-1]
docs = last_message.content
# Prompt
prompt = hub.pull("rlm/rag-prompt")
# LLM
llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0, streaming=True)
# Post-processing
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
# Chain
rag_chain = prompt | llm | StrOutputParser()
# Run
response = rag_chain.invoke({"context": docs, "question": question})
return {"messages": [response]}
from langgraph.graph import END, StateGraph, START
from langgraph.prebuilt import ToolNode
# Define a new graph
workflow = StateGraph(AgentState)
# Define the nodes we will cycle between
workflow.add_node("agent", agent) # agent
retrieve = ToolNode([retriever_tool])
workflow.add_node("retrieve", retrieve) # retrieval
workflow.add_node("rewrite", rewrite) # Re-writing the question
workflow.add_node(
"generate", generate
) # Generating a response after we know the documents are relevant
# Call agent node to decide to retrieve or not
workflow.add_edge(START, "agent")
# Decide whether to retrieve
workflow.add_conditional_edges(
"agent",
# Assess agent decision
tools_condition,
{
# Translate the condition outputs to nodes in our graph
"tools": "retrieve",
END: END,
},
)
# Edges taken after the `action` node is called.
workflow.add_conditional_edges(
"retrieve",
# Assess agent decision
grade_documents,
)
workflow.add_edge("generate", END)
workflow.add_edge("rewrite", "agent")
# Compile
graph = workflow.compile()