acpotts commited on
Commit
870be69
1 Parent(s): a8c2f1b

modified app.py to contain graph

Browse files
AgenticRAG/agentic_rag.py CHANGED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.tools.retriever import create_retriever_tool
2
+ from typing import Annotated, Literal, Sequence, TypedDict
3
+ from typing import Annotated, Sequence, TypedDict
4
+ from langchain_core.messages import BaseMessage
5
+ from langgraph.graph.message import add_messages
6
+ from langchain import hub
7
+ from langchain_core.messages import BaseMessage, HumanMessage
8
+ from langchain_core.output_parsers import StrOutputParser
9
+ from langchain_core.prompts import PromptTemplate
10
+ from langchain_openai import ChatOpenAI
11
+ from pydantic import BaseModel, Field
12
+ from langgraph.prebuilt import tools_condition
13
+
14
+ from aimakerspace.vectordatabase import VectorDatabase
15
+
16
+
17
+
18
+ retriever_tool = create_retriever_tool(
19
+ retriever,
20
+ "retrieve_blog_posts",
21
+ "Search and return information about the responsible and ethical use of AI along with the development of policies and practices to protect civil rights and promote democratic values in the building, deployment, and government of automated systems.",
22
+ )
23
+
24
+ tools = [retriever_tool]
25
+
26
+
27
+
28
+
29
+ class AgentState(TypedDict):
30
+ # The add_messages function defines how an update should be processed
31
+ # Default is to replace. add_messages says "append"
32
+ messages: Annotated[Sequence[BaseMessage], add_messages]
33
+
34
+
35
+
36
+
37
+ ### Edges
38
+
39
+
40
+ def grade_documents(state) -> Literal["generate", "rewrite"]:
41
+ """
42
+ Determines whether the retrieved documents are relevant to the question.
43
+
44
+ Args:
45
+ state (messages): The current state
46
+
47
+ Returns:
48
+ str: A decision for whether the documents are relevant or not
49
+ """
50
+
51
+ # Data model
52
+ class grade(BaseModel):
53
+ """Binary score for relevance check."""
54
+
55
+ binary_score: str = Field(description="Relevance score 'yes' or 'no'")
56
+
57
+ # LLM
58
+ model = ChatOpenAI(temperature=0, model="gpt-4o-mini", streaming=True)
59
+
60
+ # LLM with tool and validation
61
+ llm_with_tool = model.with_structured_output(grade)
62
+
63
+ # Prompt
64
+ prompt = PromptTemplate(
65
+ template="""You are a grader assessing relevance of a retrieved document to a user question. \n
66
+ Here is the retrieved document: \n\n {context} \n\n
67
+ Here is the user question: {question} \n
68
+ If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n
69
+ Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.""",
70
+ input_variables=["context", "question"],
71
+ )
72
+
73
+ # Chain
74
+ chain = prompt | llm_with_tool
75
+
76
+ messages = state["messages"]
77
+ last_message = messages[-1]
78
+
79
+ question = messages[0].content
80
+ docs = last_message.content
81
+
82
+ scored_result = chain.invoke({"question": question, "context": docs})
83
+
84
+ score = scored_result.binary_score
85
+
86
+ if score == "yes":
87
+ print("---DECISION: DOCS RELEVANT---")
88
+ return "generate"
89
+
90
+ else:
91
+ print("---DECISION: DOCS NOT RELEVANT---")
92
+ print(score)
93
+ return "rewrite"
94
+
95
+ ### Nodes
96
+
97
+
98
+ def agent(state):
99
+ """
100
+ Invokes the agent model to generate a response based on the current state. Given
101
+ the question, it will decide to retrieve using the retriever tool, or simply end.
102
+
103
+ Args:
104
+ state (messages): The current state
105
+
106
+ Returns:
107
+ dict: The updated state with the agent response appended to messages
108
+ """
109
+ print("---CALL AGENT---")
110
+ messages = state["messages"]
111
+ model = ChatOpenAI(temperature=0, streaming=True, model="gpt-4o-mini")
112
+ model = model.bind_tools(tools)
113
+ response = model.invoke(messages)
114
+ # We return a list, because this will get added to the existing list
115
+ return {"messages": [response]}
116
+
117
+
118
+ def rewrite(state):
119
+ """
120
+ Transform the query to produce a better question.
121
+
122
+ Args:
123
+ state (messages): The current state
124
+
125
+ Returns:
126
+ dict: The updated state with re-phrased question
127
+ """
128
+
129
+ print("---TRANSFORM QUERY---")
130
+ messages = state["messages"]
131
+ question = messages[0].content
132
+
133
+ msg = [
134
+ HumanMessage(
135
+ content=f""" \n
136
+ Look at the input and try to reason about the underlying semantic intent / meaning. \n
137
+ Here is the initial question:
138
+ \n ------- \n
139
+ {question}
140
+ \n ------- \n
141
+ Formulate an improved question: """,
142
+ )
143
+ ]
144
+
145
+ # Grader
146
+ model = ChatOpenAI(temperature=0, model="gpt-4o-mini", streaming=True)
147
+ response = model.invoke(msg)
148
+ return {"messages": [response]}
149
+
150
+
151
+ def generate(state):
152
+ """
153
+ Generate answer
154
+
155
+ Args:
156
+ state (messages): The current state
157
+
158
+ Returns:
159
+ dict: The updated state with re-phrased question
160
+ """
161
+ print("---GENERATE---")
162
+ messages = state["messages"]
163
+ question = messages[0].content
164
+ last_message = messages[-1]
165
+
166
+ docs = last_message.content
167
+
168
+ # Prompt
169
+ prompt = hub.pull("rlm/rag-prompt")
170
+
171
+ # LLM
172
+ llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0, streaming=True)
173
+
174
+ # Post-processing
175
+ def format_docs(docs):
176
+ return "\n\n".join(doc.page_content for doc in docs)
177
+
178
+ # Chain
179
+ rag_chain = prompt | llm | StrOutputParser()
180
+
181
+ # Run
182
+ response = rag_chain.invoke({"context": docs, "question": question})
183
+ return {"messages": [response]}
184
+
185
+ from langgraph.graph import END, StateGraph, START
186
+ from langgraph.prebuilt import ToolNode
187
+
188
+ # Define a new graph
189
+ workflow = StateGraph(AgentState)
190
+
191
+ # Define the nodes we will cycle between
192
+ workflow.add_node("agent", agent) # agent
193
+ retrieve = ToolNode([retriever_tool])
194
+ workflow.add_node("retrieve", retrieve) # retrieval
195
+ workflow.add_node("rewrite", rewrite) # Re-writing the question
196
+ workflow.add_node(
197
+ "generate", generate
198
+ ) # Generating a response after we know the documents are relevant
199
+ # Call agent node to decide to retrieve or not
200
+ workflow.add_edge(START, "agent")
201
+
202
+ # Decide whether to retrieve
203
+ workflow.add_conditional_edges(
204
+ "agent",
205
+ # Assess agent decision
206
+ tools_condition,
207
+ {
208
+ # Translate the condition outputs to nodes in our graph
209
+ "tools": "retrieve",
210
+ END: END,
211
+ },
212
+ )
213
+
214
+ # Edges taken after the `action` node is called.
215
+ workflow.add_conditional_edges(
216
+ "retrieve",
217
+ # Assess agent decision
218
+ grade_documents,
219
+ )
220
+ workflow.add_edge("generate", END)
221
+ workflow.add_edge("rewrite", "agent")
222
+
223
+ # Compile
224
+ graph = workflow.compile()
225
+
AgenticRAG/aimakerspace/openai_utils/embedding.py CHANGED
@@ -4,8 +4,10 @@ import openai
4
  from typing import List
5
  import os
6
  import asyncio
 
7
 
8
-
 
9
  class EmbeddingModel:
10
  def __init__(self, embeddings_model_name: str = "text-embedding-3-small"):
11
  load_dotenv()
 
4
  from typing import List
5
  import os
6
  import asyncio
7
+ from dotenv import load_dotenv
8
 
9
+ load_dotenv()
10
+ print(os.getenv('OPENAI_API_KEY'))
11
  class EmbeddingModel:
12
  def __init__(self, embeddings_model_name: str = "text-embedding-3-small"):
13
  load_dotenv()
AgenticRAG/app.py CHANGED
@@ -14,6 +14,10 @@ import chainlit as cl
14
  from langchain_text_splitters import RecursiveCharacterTextSplitter
15
  # from langchain_experimental.text_splitter import SemanticChunker
16
  # from langchain_openai.embeddings import OpenAIEmbeddings
 
 
 
 
17
 
18
  system_template = """\
19
  Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
@@ -27,20 +31,18 @@ Question:
27
  """
28
  user_role_prompt = UserRolePrompt(user_prompt_template)
29
 
30
- class RetrievalAugmentedQAPipeline:
31
- def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
32
- self.llm = llm
33
  self.vector_db_retriever = vector_db_retriever
34
 
35
- async def arun_pipeline(self, user_query: str):
36
- context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
 
37
 
38
- context_prompt = ""
39
- for context in context_list:
40
- context_prompt += context[0] + "\n"
41
 
42
  formatted_system_prompt = system_role_prompt.create_message()
43
-
44
  formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
45
 
46
  async def generate_response():
@@ -49,12 +51,12 @@ class RetrievalAugmentedQAPipeline:
49
 
50
  return {"response": generate_response(), "context": context_list}
51
 
 
 
 
52
  text_splitter = RecursiveCharacterTextSplitter()
53
- # try:
54
- # api_key = os.environ["OPENAI_API_KEY"]
55
- # except KeyError:
56
- # print("Environment variable OPENAI_API_KEY not found")
57
- # text_splitter = SemanticChunker(OpenAIEmbeddings(api_key=api_key), breakpoint_threshold_type="standard_deviation")
58
 
59
  def process_text_file(file: AskFileResponse):
60
  import tempfile
@@ -75,11 +77,9 @@ def process_text_file(file: AskFileResponse):
75
  else:
76
  raise ValueError("Provide a .txt or .pdf file")
77
  texts = [x.page_content for x in text_splitter.transform_documents(documents)]
78
- # texts = [x.page_content for x in text_splitter.split_documents(documents)]
79
  return texts
80
 
81
 
82
-
83
  @cl.on_chat_start
84
  async def on_chat_start():
85
  files = None
@@ -111,11 +111,234 @@ async def on_chat_start():
111
 
112
  chat_openai = ChatOpenAI()
113
 
114
- # Create a chain
115
- retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
116
- vector_db_retriever=vector_db,
117
- llm=chat_openai
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  )
 
 
 
 
 
 
 
 
 
119
 
120
  # Let the user know that the system is ready
121
  msg.content = f"Processing `{file.name}` done. You can now ask questions!"
 
14
  from langchain_text_splitters import RecursiveCharacterTextSplitter
15
  # from langchain_experimental.text_splitter import SemanticChunker
16
  # from langchain_openai.embeddings import OpenAIEmbeddings
17
+ import importlib
18
+
19
+
20
+
21
 
22
  system_template = """\
23
  Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
 
31
  """
32
  user_role_prompt = UserRolePrompt(user_prompt_template)
33
 
34
+ class AgenticRAGPipeline:
35
+ def __init__(self, graph: StateGraph, vector_db_retriever: VectorDatabase) -> None:
36
+ self.graph = graph
37
  self.vector_db_retriever = vector_db_retriever
38
 
39
+ async def run_pipeline(self, user_query: str):
40
+ state = self.graph.execute({"text": user_query, "chunk_size": 100})
41
+ context_list = state["retriever"]
42
 
43
+ context_prompt = "\n".join(context_list)
 
 
44
 
45
  formatted_system_prompt = system_role_prompt.create_message()
 
46
  formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
47
 
48
  async def generate_response():
 
51
 
52
  return {"response": generate_response(), "context": context_list}
53
 
54
+
55
+
56
+
57
  text_splitter = RecursiveCharacterTextSplitter()
58
+
59
+
 
 
 
60
 
61
  def process_text_file(file: AskFileResponse):
62
  import tempfile
 
77
  else:
78
  raise ValueError("Provide a .txt or .pdf file")
79
  texts = [x.page_content for x in text_splitter.transform_documents(documents)]
 
80
  return texts
81
 
82
 
 
83
  @cl.on_chat_start
84
  async def on_chat_start():
85
  files = None
 
111
 
112
  chat_openai = ChatOpenAI()
113
 
114
+ retriever = vector_db
115
+ """Graph code here"""
116
+
117
+ from langchain.tools.retriever import create_retriever_tool
118
+ from typing import Annotated, Literal, Sequence, TypedDict
119
+ from typing import Annotated, Sequence, TypedDict
120
+ from langchain_core.messages import BaseMessage
121
+ from langgraph.graph.message import add_messages
122
+ from langchain import hub
123
+ from langchain_core.messages import BaseMessage, HumanMessage
124
+ from langchain_core.output_parsers import StrOutputParser
125
+ from langchain_core.prompts import PromptTemplate
126
+ from langchain_openai import ChatOpenAI
127
+ from pydantic import BaseModel, Field
128
+ from langgraph.prebuilt import tools_condition
129
+
130
+ from aimakerspace.vectordatabase import VectorDatabase
131
+
132
+ retriever_tool = create_retriever_tool(
133
+ retriever,
134
+ "retrieve_blog_posts",
135
+ "Search and return information about the responsible and ethical use of AI along with the development of policies and practices to protect civil rights and promote democratic values in the building, deployment, and government of automated systems.",
136
+ )
137
+
138
+ tools = [retriever_tool]
139
+
140
+
141
+
142
+ class AgentState(TypedDict):
143
+ # The add_messages function defines how an update should be processed
144
+ # Default is to replace. add_messages says "append"
145
+ messages: Annotated[Sequence[BaseMessage], add_messages]
146
+
147
+
148
+
149
+
150
+ ### Edges
151
+
152
+
153
+ def grade_documents(state) -> Literal["generate", "rewrite"]:
154
+ """
155
+ Determines whether the retrieved documents are relevant to the question.
156
+
157
+ Args:
158
+ state (messages): The current state
159
+
160
+ Returns:
161
+ str: A decision for whether the documents are relevant or not
162
+ """
163
+
164
+ # Data model
165
+ class grade(BaseModel):
166
+ """Binary score for relevance check."""
167
+
168
+ binary_score: str = Field(description="Relevance score 'yes' or 'no'")
169
+
170
+ # LLM
171
+ model = ChatOpenAI(temperature=0, model="gpt-4o-mini", streaming=True)
172
+
173
+ # LLM with tool and validation
174
+ llm_with_tool = model.with_structured_output(grade)
175
+
176
+ # Prompt
177
+ prompt = PromptTemplate(
178
+ template="""You are a grader assessing relevance of a retrieved document to a user question. \n
179
+ Here is the retrieved document: \n\n {context} \n\n
180
+ Here is the user question: {question} \n
181
+ If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n
182
+ Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.""",
183
+ input_variables=["context", "question"],
184
+ )
185
+
186
+ # Chain
187
+ chain = prompt | llm_with_tool
188
+
189
+ messages = state["messages"]
190
+ last_message = messages[-1]
191
+
192
+ question = messages[0].content
193
+ docs = last_message.content
194
+
195
+ scored_result = chain.invoke({"question": question, "context": docs})
196
+
197
+ score = scored_result.binary_score
198
+
199
+ if score == "yes":
200
+ print("---DECISION: DOCS RELEVANT---")
201
+ return "generate"
202
+
203
+ else:
204
+ print("---DECISION: DOCS NOT RELEVANT---")
205
+ print(score)
206
+ return "rewrite"
207
+
208
+ ### Nodes
209
+
210
+
211
+ def agent(state):
212
+ """
213
+ Invokes the agent model to generate a response based on the current state. Given
214
+ the question, it will decide to retrieve using the retriever tool, or simply end.
215
+
216
+ Args:
217
+ state (messages): The current state
218
+
219
+ Returns:
220
+ dict: The updated state with the agent response appended to messages
221
+ """
222
+ print("---CALL AGENT---")
223
+ messages = state["messages"]
224
+ model = ChatOpenAI(temperature=0, streaming=True, model="gpt-4o-mini")
225
+ model = model.bind_tools(tools)
226
+ response = model.invoke(messages)
227
+ # We return a list, because this will get added to the existing list
228
+ return {"messages": [response]}
229
+
230
+
231
+ def rewrite(state):
232
+ """
233
+ Transform the query to produce a better question.
234
+
235
+ Args:
236
+ state (messages): The current state
237
+
238
+ Returns:
239
+ dict: The updated state with re-phrased question
240
+ """
241
+
242
+ print("---TRANSFORM QUERY---")
243
+ messages = state["messages"]
244
+ question = messages[0].content
245
+
246
+ msg = [
247
+ HumanMessage(
248
+ content=f""" \n
249
+ Look at the input and try to reason about the underlying semantic intent / meaning. \n
250
+ Here is the initial question:
251
+ \n ------- \n
252
+ {question}
253
+ \n ------- \n
254
+ Formulate an improved question: """,
255
+ )
256
+ ]
257
+
258
+ # Grader
259
+ model = ChatOpenAI(temperature=0, model="gpt-4o-mini", streaming=True)
260
+ response = model.invoke(msg)
261
+ return {"messages": [response]}
262
+
263
+
264
+ def generate(state):
265
+ """
266
+ Generate answer
267
+
268
+ Args:
269
+ state (messages): The current state
270
+
271
+ Returns:
272
+ dict: The updated state with re-phrased question
273
+ """
274
+ print("---GENERATE---")
275
+ messages = state["messages"]
276
+ question = messages[0].content
277
+ last_message = messages[-1]
278
+
279
+ docs = last_message.content
280
+
281
+ # Prompt
282
+ prompt = hub.pull("rlm/rag-prompt")
283
+
284
+ # LLM
285
+ llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0, streaming=True)
286
+
287
+ # Post-processing
288
+ def format_docs(docs):
289
+ return "\n\n".join(doc.page_content for doc in docs)
290
+
291
+ # Chain
292
+ rag_chain = prompt | llm | StrOutputParser()
293
+
294
+ # Run
295
+ response = rag_chain.invoke({"context": docs, "question": question})
296
+ return {"messages": [response]}
297
+
298
+ from langgraph.graph import END, StateGraph, START
299
+ from langgraph.prebuilt import ToolNode
300
+
301
+ # Define a new graph
302
+ workflow = StateGraph(AgentState)
303
+
304
+ # Define the nodes we will cycle between
305
+ workflow.add_node("agent", agent) # agent
306
+ retrieve = ToolNode([retriever_tool])
307
+ workflow.add_node("retrieve", retrieve) # retrieval
308
+ workflow.add_node("rewrite", rewrite) # Re-writing the question
309
+ workflow.add_node(
310
+ "generate", generate
311
+ ) # Generating a response after we know the documents are relevant
312
+ # Call agent node to decide to retrieve or not
313
+ workflow.add_edge(START, "agent")
314
+
315
+ # Decide whether to retrieve
316
+ workflow.add_conditional_edges(
317
+ "agent",
318
+ # Assess agent decision
319
+ tools_condition,
320
+ {
321
+ # Translate the condition outputs to nodes in our graph
322
+ "tools": "retrieve",
323
+ END: END,
324
+ },
325
+ )
326
+
327
+ # Edges taken after the `action` node is called.
328
+ workflow.add_conditional_edges(
329
+ "retrieve",
330
+ # Assess agent decision
331
+ grade_documents,
332
  )
333
+ workflow.add_edge("generate", END)
334
+ workflow.add_edge("rewrite", "agent")
335
+
336
+ # Compile
337
+ graph = workflow.compile()
338
+
339
+ """END GRAPH CODE"""
340
+ # Create a chain
341
+ retrieval_augmented_qa_pipeline = AgenticRAGPipeline(graph=graph, vector_db_retriever=vector_db)
342
 
343
  # Let the user know that the system is ready
344
  msg.content = f"Processing `{file.name}` done. You can now ask questions!"
AgenticRAG/previous_app.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import List
3
+ from chainlit.types import AskFileResponse
4
+ from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
5
+ from aimakerspace.openai_utils.prompts import (
6
+ UserRolePrompt,
7
+ SystemRolePrompt,
8
+ AssistantRolePrompt,
9
+ )
10
+ from aimakerspace.openai_utils.embedding import EmbeddingModel
11
+ from aimakerspace.vectordatabase import VectorDatabase
12
+ from aimakerspace.openai_utils.chatmodel import ChatOpenAI
13
+ import chainlit as cl
14
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
15
+ # from langchain_experimental.text_splitter import SemanticChunker
16
+ # from langchain_openai.embeddings import OpenAIEmbeddings
17
+
18
+ system_template = """\
19
+ Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
20
+ system_role_prompt = SystemRolePrompt(system_template)
21
+
22
+ user_prompt_template = """\
23
+ Context:
24
+ {context}
25
+ Question:
26
+ {question}
27
+ """
28
+ user_role_prompt = UserRolePrompt(user_prompt_template)
29
+
30
+ class RetrievalAugmentedQAPipeline:
31
+ def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
32
+ self.llm = llm
33
+ self.vector_db_retriever = vector_db_retriever
34
+
35
+ async def arun_pipeline(self, user_query: str):
36
+ context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
37
+
38
+ context_prompt = ""
39
+ for context in context_list:
40
+ context_prompt += context[0] + "\n"
41
+
42
+ formatted_system_prompt = system_role_prompt.create_message()
43
+
44
+ formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
45
+
46
+ async def generate_response():
47
+ async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
48
+ yield chunk
49
+
50
+ return {"response": generate_response(), "context": context_list}
51
+
52
+ text_splitter = RecursiveCharacterTextSplitter()
53
+ # try:
54
+ # api_key = os.environ["OPENAI_API_KEY"]
55
+ # except KeyError:
56
+ # print("Environment variable OPENAI_API_KEY not found")
57
+ # text_splitter = SemanticChunker(OpenAIEmbeddings(api_key=api_key), breakpoint_threshold_type="standard_deviation")
58
+
59
+ def process_text_file(file: AskFileResponse):
60
+ import tempfile
61
+ from langchain_community.document_loaders.pdf import PyPDFLoader
62
+
63
+ with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=file.name) as temp_file:
64
+ temp_file_path = temp_file.name
65
+
66
+ with open(temp_file_path, "wb") as f:
67
+ f.write(file.content)
68
+
69
+ if file.type == 'text/plain':
70
+ text_loader = TextFileLoader(temp_file_path)
71
+ documents = text_loader.load_documents()
72
+ elif file.type == 'application/pdf':
73
+ pdf_loader = PyPDFLoader(temp_file_path)
74
+ documents = pdf_loader.load()
75
+ else:
76
+ raise ValueError("Provide a .txt or .pdf file")
77
+ texts = [x.page_content for x in text_splitter.transform_documents(documents)]
78
+ # texts = [x.page_content for x in text_splitter.split_documents(documents)]
79
+ return texts
80
+
81
+
82
+
83
+ @cl.on_chat_start
84
+ async def on_chat_start():
85
+ files = None
86
+
87
+ # Wait for the user to upload a file
88
+ while files == None:
89
+ files = await cl.AskFileMessage(
90
+ content="Please upload a Text file or a PDF to begin!",
91
+ accept=["text/plain", "application/pdf"],
92
+ max_size_mb=12,
93
+ timeout=180,
94
+ ).send()
95
+
96
+ file = files[0]
97
+
98
+ msg = cl.Message(
99
+ content=f"Processing `{file.name}`...", disable_human_feedback=True
100
+ )
101
+ await msg.send()
102
+
103
+ # load the file
104
+ texts = process_text_file(file)
105
+
106
+ print(f"Processing {len(texts)} text chunks")
107
+
108
+ # Create a dict vector store
109
+ vector_db = VectorDatabase()
110
+ vector_db = await vector_db.abuild_from_list(texts)
111
+
112
+ chat_openai = ChatOpenAI()
113
+
114
+ # Create a chain
115
+ retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
116
+ vector_db_retriever=vector_db,
117
+ llm=chat_openai
118
+ )
119
+
120
+ # Let the user know that the system is ready
121
+ msg.content = f"Processing `{file.name}` done. You can now ask questions!"
122
+ await msg.update()
123
+
124
+ cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
125
+
126
+
127
+ @cl.on_message
128
+ async def main(message):
129
+ chain = cl.user_session.get("chain")
130
+
131
+ msg = cl.Message(content="")
132
+ result = await chain.arun_pipeline(message.content)
133
+
134
+ async for stream_resp in result["response"]:
135
+ await msg.stream_token(stream_resp)
136
+
137
+ await msg.send()
AgenticRAG/requirements.txt CHANGED
@@ -4,4 +4,9 @@ openai
4
  langchain_community
5
  langchain_experimental
6
  langchain_openai
7
- pypdf
 
 
 
 
 
 
4
  langchain_community
5
  langchain_experimental
6
  langchain_openai
7
+ pypdf
8
+ tiktoken
9
+ langchainhub
10
+ langchain
11
+ langgraph
12
+ langchain-text-splitters
agentic_rag.py ADDED
File without changes