Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from transformers import CLIPTextModel | |
from transformers.models.clip.modeling_clip import CLIPAttention | |
from typing import Optional, Tuple, Union | |
from transformers.modeling_outputs import BaseModelOutputWithPooling | |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter | |
from diffusers import ( | |
StableDiffusionPipeline, | |
UNet2DConditionModel, | |
DDIMScheduler, | |
) | |
# from transformers.models.clip.modeling_clip import _make_causal_mask, _expand_mask | |
_make_causal_mask = AttentionMaskConverter._make_causal_mask | |
_expand_mask = AttentionMaskConverter._expand_mask | |
from .util import perturb_tensor | |
def create_arc2face_pipeline(base_model_path="models/sd15-dste8-vae.safetensors", | |
dtype=torch.float16, unet_only=False): | |
unet = UNet2DConditionModel.from_pretrained( | |
'models/arc2face', subfolder="arc2face", torch_dtype=dtype | |
) | |
if unet_only: | |
return unet | |
text_encoder = CLIPTextModelWrapper.from_pretrained( | |
'models/arc2face', subfolder="encoder", torch_dtype=dtype | |
) | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
pipeline = StableDiffusionPipeline.from_single_file( | |
base_model_path, | |
text_encoder=text_encoder, | |
unet=unet, | |
torch_dtype=dtype, | |
safety_checker=None | |
) | |
pipeline.scheduler = noise_scheduler | |
return pipeline | |
# Extend CLIPAttention by using multiple k_proj and v_proj in each head. | |
# To avoid too much increase of computation, we don't extend q_proj. | |
class CLIPAttentionMKV(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config, multiplier=2): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = config.attention_dropout | |
self.multiplier = multiplier | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim * self.multiplier) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim * self.multiplier) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
# The (approximately) repeated token features are repeated along the last dim in tensor | |
# (multiplier * num_heads * head_dim), and then reshaped to (bsz, -1, num_heads, head_dim). | |
# Therefore, the "multiplier" dim is tucked into the seq_len dim, which looks like | |
# [token1_emb, token1_emb, token2_emb, token2_emb, ..., tokenN_emb, tokenN_emb]. | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
# clip_attn_layer is usually self. | |
def extend_weights(self, clip_attn_layer, layer_idx, multiplier, perturb_std=0.2, | |
perturb_std_is_relative=True, perturb_keep_norm=False, verbose=False): | |
ORIG_V_SHAPE = list(clip_attn_layer.v_proj.weight.shape) | |
ORIG_V_SHAPE_D0 = ORIG_V_SHAPE[0] | |
ORIG_K_SHAPE = list(clip_attn_layer.k_proj.weight.shape) | |
ORIG_K_SHAPE_D0 = ORIG_K_SHAPE[0] | |
self.multiplier *= multiplier | |
# q_proj and out_proj are the same as the original CLIPAttention. | |
self.q_proj.weight.data = clip_attn_layer.q_proj.weight.data.clone() | |
self.q_proj.bias.data = clip_attn_layer.q_proj.bias.data.clone() | |
self.out_proj.weight.data = clip_attn_layer.out_proj.weight.data.clone() | |
self.out_proj.bias.data = clip_attn_layer.out_proj.bias.data.clone() | |
# bias doesn't need noise perturbation, as after the weights are noised, | |
# different copies of the weight/bias will receive different gradients, | |
# making the bias terms diverge and identifiable after training. | |
self.k_proj.bias.data = clip_attn_layer.k_proj.bias.data.repeat(multiplier) | |
self.v_proj.bias.data = clip_attn_layer.v_proj.bias.data.repeat(multiplier) | |
self.k_proj.weight.data = clip_attn_layer.k_proj.weight.data.repeat(multiplier, 1) | |
self.v_proj.weight.data = clip_attn_layer.v_proj.weight.data.repeat(multiplier, 1) | |
# Correct the out_features attribute of k_proj and v_proj. | |
self.k_proj.out_features = self.k_proj.weight.shape[0] | |
self.v_proj.out_features = self.v_proj.weight.shape[0] | |
if perturb_std > 0: | |
# Adding noise to the extra copies of the weights (keep the first copy unchanged). | |
self.v_proj.weight.data[ORIG_V_SHAPE_D0:] = \ | |
perturb_tensor(self.v_proj.weight.data[ORIG_V_SHAPE_D0:], | |
perturb_std, perturb_std_is_relative, perturb_keep_norm, verbose=verbose) | |
if verbose: | |
NEW_V_SHAPE = list(self.v_proj.weight.shape) | |
NOISED_V_SHAPE = list(self.v_proj.weight.data[ORIG_V_SHAPE_D0:].shape) | |
print(f"Layer {layer_idx}: {NOISED_V_SHAPE} in {NEW_V_SHAPE} of v_proj is added with {perturb_std} noise") | |
# Adding noise to the extra copies of the weights. | |
self.k_proj.weight.data[ORIG_K_SHAPE_D0:] = \ | |
perturb_tensor(self.k_proj.weight.data[ORIG_K_SHAPE_D0:], | |
perturb_std, perturb_std_is_relative, perturb_keep_norm, verbose=verbose) | |
if verbose: | |
NEW_K_SHAPE = list(self.k_proj.weight.shape) | |
NOISED_K_SHAPE = list(self.k_proj.weight.data[ORIG_K_SHAPE_D0:].shape) | |
print(f"Layer {layer_idx}: {NOISED_K_SHAPE} in {NEW_K_SHAPE} of k_proj is added with {perturb_std} noise") | |
def squeeze_weights(self, clip_attn_layer, divisor): | |
if self.multiplier % divisor != 0: | |
breakpoint() | |
self.multiplier //= divisor | |
self.k_proj.bias.data = clip_attn_layer.k_proj.bias.data.reshape(divisor, -1).mean(dim=0) | |
self.v_proj.bias.data = clip_attn_layer.v_proj.bias.data.reshape(divisor, -1).mean(dim=0) | |
self.k_proj.weight.data = clip_attn_layer.k_proj.weight.data.reshape(divisor, -1, self.k_proj.weight.shape[1]).mean(dim=0) | |
self.v_proj.weight.data = clip_attn_layer.v_proj.weight.data.reshape(divisor, -1, self.v_proj.weight.shape[1]).mean(dim=0) | |
# Correct the out_features attribute of k_proj and v_proj. | |
self.k_proj.out_features = self.k_proj.weight.shape[0] | |
self.v_proj.out_features = self.v_proj.weight.shape[0] | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
causal_attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
bsz, tgt_len, embed_dim = hidden_states.size() | |
query_states = self.q_proj(hidden_states) * self.scale | |
# For key_states and value_states, the multiplier is absorbed into the seq_len (dim 1, shape specified as -1). | |
# [token0_head_emb, token0_head_emb, token1_head_emb, token1_head_emb, ..., tokenN-1_head_emb, tokenN-1_head_emb]. | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
# src_len0 is the original src_len without the multiplier. | |
src_len0 = src_len // self.multiplier | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2).contiguous()) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
# apply the causal_attention_mask first | |
if causal_attention_mask is not None: | |
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len0): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len0)}, but is" | |
f" {causal_attention_mask.size()}" | |
) | |
# The last dim of attn_weights corresponds to [token0, token0, token1, token1, ..., tokenN-1, tokenN-1]. | |
# If reshaping it as (self.multiplier, src_len0), it will become | |
# [[token0, token0, token1, token1, ..., tokenN//2], [tokenN//2+1, tokenN//2+1, ..., tokenN-1, tokenN-1]], | |
# and the mask will be applied to wrong elements. | |
# If reshaping it as (src_len0, self.multiplier), it will become | |
# [[token0, token1, ..., tokenN-1], [token0, token1, ..., tokenN-1]], and then | |
# the mask at element i will mask all the multiplier elements at i, which is desired. | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len0, self.multiplier) + causal_attention_mask.unsqueeze(4) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len0): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len0)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len0, self.multiplier) + attention_mask.unsqueeze(4) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped | |
class CLIPTextModelWrapper(CLIPTextModel): | |
# Adapted from https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/clip/modeling_clip.py#L812 | |
# Modified to accept precomputed token embeddings "input_token_embs" as input or calculate them from input_ids and return them. | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
input_token_embs: Optional[torch.Tensor] = None, | |
hidden_state_layer_weights: Optional[torch.Tensor] = None, | |
return_token_embs: Optional[bool] = False, | |
) -> Union[Tuple, torch.Tensor, BaseModelOutputWithPooling]: | |
if return_token_embs: | |
return self.text_model.embeddings.token_embedding(input_ids) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
output_attentions = output_attentions if output_attentions is not None else self.text_model.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.text_model.config.output_hidden_states | |
) | |
if hidden_state_layer_weights is not None: | |
output_hidden_states = True | |
return_dict = return_dict if return_dict is not None else self.text_model.config.use_return_dict | |
if input_ids is None: | |
raise ValueError("You have to specify input_ids") | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
hidden_states = self.text_model.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=input_token_embs) | |
# CLIP's text model uses causal mask, prepare it here. | |
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 | |
causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device) | |
# expand attention_mask | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _expand_mask(attention_mask, hidden_states.dtype) | |
encoder_outputs = self.text_model.encoder( | |
inputs_embeds=hidden_states, | |
attention_mask=attention_mask, | |
causal_attention_mask=causal_attention_mask, | |
output_attentions=output_attentions, | |
# output_hidden_states is False by default, and only True if hidden_state_layer_weights is provided. | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# If output_hidden_states is True, then encoder_outputs[0] is last_hidden_state [1, 22, 768]. | |
# encoder_outputs[1] is hidden_states, which is a tuple of 13 hidden states, each being [1, 22, 768]. | |
# encoder_outputs[0] == encoder_outputs[1][12]. | |
if hidden_state_layer_weights is None: | |
last_hidden_state = encoder_outputs[0] | |
else: | |
num_hidden_state_layers = len(hidden_state_layer_weights) | |
last_hidden_states = encoder_outputs[1][-num_hidden_state_layers:] | |
hidden_state_layer_weights = hidden_state_layer_weights.to(last_hidden_states[0].dtype) | |
# Normalize the weights of to sum to 1 across layers. | |
# hidden_state_layer_weights: [3, 1] or [3, 768]. | |
hidden_state_layer_weights = hidden_state_layer_weights / hidden_state_layer_weights.sum(dim=0, keepdim=True) | |
# [3, 1/768] -> [3, 1, 1, 1/768] | |
hidden_state_layer_weights = hidden_state_layer_weights.unsqueeze(1).unsqueeze(1) | |
# A weighted sum of last_hidden_states. | |
# [3, 1, 22, 768] * [3, 1, 1, 1/768] -> [3, 1, 22, 768] -> [1, 22, 768] | |
last_hidden_state = (torch.stack(last_hidden_states, dim=0) * hidden_state_layer_weights).sum(dim=0) | |
last_hidden_state = self.text_model.final_layer_norm(last_hidden_state) | |
# self.text_model.eos_token_id == 2 is True. | |
if self.text_model.eos_token_id == 2: | |
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. | |
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added | |
# ------------------------------------------------------------ | |
# text_embeds.shape = [batch_size, sequence_length, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 | |
pooled_output = last_hidden_state[ | |
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), | |
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), | |
] | |
else: | |
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) | |
pooled_output = last_hidden_state[ | |
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), | |
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) | |
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.text_model.eos_token_id) | |
.int() | |
.argmax(dim=-1), | |
] | |
if not return_dict: | |
return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=last_hidden_state, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
# Applied to all attention layers in the encoder, if the corresponding multiplier is not 1. | |
# The layer indexed by end_layer_idx is not included. | |
# If both layer indices are -1, then apply to all layers (0-11). | |
def extend_clip_attention_MKV_multiplier(self, prompt2token_proj_attention_multipliers, perturb_std=0.1): | |
num_extended_layers = 0 | |
for layer_idx, layer in enumerate(self.text_model.encoder.layers): | |
multiplier = prompt2token_proj_attention_multipliers[layer_idx] | |
if multiplier == 1: | |
continue | |
# This shouldn't happen, unless self_attn has already been extended as CLIPAttentionMKV. | |
if not isinstance(layer.self_attn, (CLIPAttention, CLIPAttentionMKV)): | |
breakpoint() | |
old_attn_layer = layer.self_attn | |
if not isinstance(old_attn_layer, CLIPAttentionMKV): | |
layer.self_attn = CLIPAttentionMKV(old_attn_layer.config, 1) | |
# Extends the v_proj and k_proj weights in the self_attn layer. | |
layer.self_attn.extend_weights(old_attn_layer, layer_idx, multiplier, perturb_std, verbose=True) | |
num_extended_layers += 1 | |
return num_extended_layers | |
# Applied to layers [begin_layer_idx, end_layer_idx) in the encoder. | |
# The layer indexed by end_layer_idx is not included. | |
# If both layer indices are -1, then apply to all layers (0-11). | |
def squeeze_clip_attention_MKV_divisor(self, prompt2token_proj_attention_divisors): | |
num_squeezed_layers = 0 | |
for layer_idx, layer in enumerate(self.text_model.encoder.layers): | |
divisor = prompt2token_proj_attention_divisors[layer_idx] | |
if divisor == 1: | |
continue | |
# This shouldn't happen, unless self_attn has already been extended as CLIPAttentionMKV. | |
if not isinstance(layer.self_attn, (CLIPAttention, CLIPAttentionMKV)): | |
breakpoint() | |
old_attn_layer = layer.self_attn | |
if not isinstance(old_attn_layer, CLIPAttentionMKV): | |
layer.self_attn = CLIPAttentionMKV(old_attn_layer.config, 1) | |
# Squeeze the k_proj and v_proj weights in the self_attn layer. | |
layer.self_attn.squeeze_weights(old_attn_layer, divisor) | |
num_squeezed_layers += 1 | |
return num_squeezed_layers | |