|
|
|
|
|
|
|
import argparse |
|
import sys |
|
import pandas as pd |
|
from argparse import RawTextHelpFormatter |
|
|
|
|
|
from pathlib import Path |
|
|
|
from TTS.utils.manage import ModelManager |
|
from TTS.utils.synthesizer import Synthesizer |
|
from tqdm.auto import tqdm |
|
|
|
|
|
def str2bool(v): |
|
if isinstance(v, bool): |
|
return v |
|
if v.lower() in ("yes", "true", "t", "y", "1"): |
|
return True |
|
if v.lower() in ("no", "false", "f", "n", "0"): |
|
return False |
|
raise argparse.ArgumentTypeError("Boolean value expected.") |
|
|
|
|
|
def main(): |
|
description = """Synthesize speech on command line. |
|
|
|
You can either use your trained model or choose a model from the provided list. |
|
|
|
If you don't specify any models, then it uses LJSpeech based English model. |
|
|
|
## Example Runs |
|
|
|
### Single Speaker Models |
|
|
|
- List provided models: |
|
|
|
``` |
|
$ tts --list_models |
|
``` |
|
|
|
- Query info for model info by idx: |
|
|
|
``` |
|
$ tts --model_info_by_idx "<model_type>/<model_query_idx>" |
|
``` |
|
|
|
- Query info for model info by full name: |
|
|
|
``` |
|
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>" |
|
``` |
|
|
|
- Run TTS with default models: |
|
|
|
``` |
|
$ tts --text "Text for TTS" |
|
``` |
|
|
|
- Run a TTS model with its default vocoder model: |
|
|
|
``` |
|
$ tts --text "Text for TTS" --model_name "<language>/<dataset>/<model_name>" |
|
``` |
|
|
|
- Run with specific TTS and vocoder models from the list: |
|
|
|
``` |
|
$ tts --text "Text for TTS" --model_name "<language>/<dataset>/<model_name>" --vocoder_name "<language>/<dataset>/<model_name>" --output_path |
|
``` |
|
|
|
- Run your own TTS model (Using Griffin-Lim Vocoder): |
|
|
|
``` |
|
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav |
|
``` |
|
|
|
- Run your own TTS and Vocoder models: |
|
``` |
|
$ tts --text "Text for TTS" --model_path path/to/config.json --config_path path/to/model.pth --out_path output/path/speech.wav |
|
--vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json |
|
``` |
|
|
|
### Multi-speaker Models |
|
|
|
- List the available speakers and choose as <speaker_id> among them: |
|
|
|
``` |
|
$ tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs |
|
``` |
|
|
|
- Run the multi-speaker TTS model with the target speaker ID: |
|
|
|
``` |
|
$ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id> |
|
``` |
|
|
|
- Run your own multi-speaker TTS model: |
|
|
|
``` |
|
$ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/config.json --config_path path/to/model.pth --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id> |
|
``` |
|
""" |
|
|
|
|
|
parser = argparse.ArgumentParser( |
|
description=description.replace(" ```\n", ""), |
|
formatter_class=RawTextHelpFormatter, |
|
) |
|
|
|
parser.add_argument( |
|
"--list_models", |
|
type=str2bool, |
|
nargs="?", |
|
const=True, |
|
default=False, |
|
help="list available pre-trained TTS and vocoder models.", |
|
) |
|
|
|
parser.add_argument( |
|
"--model_info_by_idx", |
|
type=str, |
|
default=None, |
|
help="model info using query format: <model_type>/<model_query_idx>", |
|
) |
|
|
|
parser.add_argument( |
|
"--model_info_by_name", |
|
type=str, |
|
default=None, |
|
help="model info using query format: <model_type>/<language>/<dataset>/<model_name>", |
|
) |
|
|
|
parser.add_argument("--text", type=str, default=None, help="Text to generate speech.") |
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument( |
|
"--model_name", |
|
type=str, |
|
default="tts_models/en/ljspeech/tacotron2-DDC", |
|
help="Name of one of the pre-trained TTS models in format <language>/<dataset>/<model_name>", |
|
) |
|
parser.add_argument( |
|
"--vocoder_name", |
|
type=str, |
|
default=None, |
|
help="Name of one of the pre-trained vocoder models in format <language>/<dataset>/<model_name>", |
|
) |
|
|
|
|
|
parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.") |
|
parser.add_argument( |
|
"--model_path", |
|
type=str, |
|
default=None, |
|
help="Path to model file.", |
|
) |
|
parser.add_argument( |
|
"--out_path", |
|
type=str, |
|
default="tts_output.wav", |
|
help="Output wav file path.", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument("--use_cuda", type=bool, help="Run model on CUDA.", default=False) |
|
parser.add_argument( |
|
"--vocoder_path", |
|
type=str, |
|
help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).", |
|
default=None, |
|
) |
|
parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None) |
|
parser.add_argument( |
|
"--encoder_path", |
|
type=str, |
|
help="Path to speaker encoder model file.", |
|
default=None, |
|
) |
|
parser.add_argument("--encoder_config_path", type=str, help="Path to speaker encoder config file.", default=None) |
|
|
|
|
|
parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None) |
|
parser.add_argument("--language_ids_file_path", type=str, help="JSON file for multi-lingual model.", default=None) |
|
parser.add_argument( |
|
"--speaker_idx", |
|
type=str, |
|
help="Target speaker ID for a multi-speaker TTS model.", |
|
default=None, |
|
) |
|
parser.add_argument( |
|
"--language_idx", |
|
type=str, |
|
help="Target language ID for a multi-lingual TTS model.", |
|
default=None, |
|
) |
|
parser.add_argument( |
|
"--speaker_wav", |
|
nargs="+", |
|
help="wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder. You can give multiple file paths. The d_vectors is computed as their average.", |
|
default=None, |
|
) |
|
parser.add_argument("--gst_style", help="Wav path file for GST style reference.", default=None) |
|
parser.add_argument( |
|
"--capacitron_style_wav", type=str, help="Wav path file for Capacitron prosody reference.", default=None |
|
) |
|
parser.add_argument("--capacitron_style_text", type=str, help="Transcription of the reference.", default=None) |
|
parser.add_argument( |
|
"--list_speaker_idxs", |
|
help="List available speaker ids for the defined multi-speaker model.", |
|
type=str2bool, |
|
nargs="?", |
|
const=True, |
|
default=False, |
|
) |
|
parser.add_argument( |
|
"--list_language_idxs", |
|
help="List available language ids for the defined multi-lingual model.", |
|
type=str2bool, |
|
nargs="?", |
|
const=True, |
|
default=False, |
|
) |
|
|
|
parser.add_argument( |
|
"--save_spectogram", |
|
type=bool, |
|
help="If true save raw spectogram for further (vocoder) processing in out_path.", |
|
default=False, |
|
) |
|
parser.add_argument( |
|
"--reference_wav", |
|
type=str, |
|
help="Reference wav file to convert in the voice of the speaker_idx or speaker_wav", |
|
default=None, |
|
) |
|
parser.add_argument( |
|
"--reference_speaker_idx", |
|
type=str, |
|
help="speaker ID of the reference_wav speaker (If not provided the embedding will be computed using the Speaker Encoder).", |
|
default=None, |
|
) |
|
args = parser.parse_args() |
|
|
|
|
|
check_args = [ |
|
args.text, |
|
args.list_models, |
|
args.list_speaker_idxs, |
|
args.list_language_idxs, |
|
args.reference_wav, |
|
args.model_info_by_idx, |
|
args.model_info_by_name, |
|
] |
|
if not any(check_args): |
|
parser.parse_args(["-h"]) |
|
|
|
|
|
path = Path(__file__).parent / "../.models.json" |
|
manager = ModelManager(path) |
|
|
|
model_path = None |
|
config_path = None |
|
speakers_file_path = None |
|
language_ids_file_path = None |
|
vocoder_path = None |
|
vocoder_config_path = None |
|
encoder_path = None |
|
encoder_config_path = None |
|
|
|
|
|
if args.list_models: |
|
manager.list_models() |
|
sys.exit() |
|
|
|
|
|
if args.model_info_by_idx: |
|
model_query = args.model_info_by_idx |
|
manager.model_info_by_idx(model_query) |
|
sys.exit() |
|
|
|
if args.model_info_by_name: |
|
model_query_full_name = args.model_info_by_name |
|
manager.model_info_by_full_name(model_query_full_name) |
|
sys.exit() |
|
|
|
|
|
if args.model_name is not None and not args.model_path: |
|
model_path, config_path, model_item = manager.download_model(args.model_name) |
|
args.vocoder_name = model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name |
|
|
|
if args.vocoder_name is not None and not args.vocoder_path: |
|
vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name) |
|
|
|
|
|
if args.model_path is not None: |
|
model_path = args.model_path |
|
config_path = args.config_path |
|
speakers_file_path = args.speakers_file_path |
|
language_ids_file_path = args.language_ids_file_path |
|
|
|
if args.vocoder_path is not None: |
|
vocoder_path = args.vocoder_path |
|
vocoder_config_path = args.vocoder_config_path |
|
|
|
if args.encoder_path is not None: |
|
encoder_path = args.encoder_path |
|
encoder_config_path = args.encoder_config_path |
|
|
|
|
|
synthesizer = Synthesizer( |
|
model_path, |
|
config_path, |
|
speakers_file_path, |
|
language_ids_file_path, |
|
vocoder_path, |
|
vocoder_config_path, |
|
encoder_path, |
|
encoder_config_path, |
|
args.use_cuda, |
|
) |
|
|
|
|
|
if args.list_speaker_idxs: |
|
print( |
|
" > Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model." |
|
) |
|
print(synthesizer.tts_model.speaker_manager.ids) |
|
return |
|
|
|
|
|
if args.list_language_idxs: |
|
print( |
|
" > Available language ids: (Set --language_idx flag to one of these values to use the multi-lingual model." |
|
) |
|
print(synthesizer.tts_model.language_manager.ids) |
|
return |
|
|
|
|
|
if synthesizer.tts_speakers_file and (not args.speaker_idx and not args.speaker_wav): |
|
print( |
|
" [!] Looks like you use a multi-speaker model. Define `--speaker_idx` to " |
|
"select the target speaker. You can list the available speakers for this model by `--list_speaker_idxs`." |
|
) |
|
return |
|
|
|
|
|
if args.text.endswith('.csv'): |
|
df = pd.read_csv(args.text, sep='|') |
|
num_cols = df.shape[1] |
|
columns = ['id', 'text', 'speaker_name', 'gender', 'text_len', 'audio_len', 'speaker_wav'][:num_cols] |
|
df = pd.read_csv(args.text, sep='|', names=columns) |
|
df = df.head(10) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(df) == 0: |
|
raise ValueError("No records found.") |
|
|
|
if 'speaker_wav' in df.columns: |
|
for idx, row in tqdm(df.iterrows(), total=len(df), desc="Synthesizing"): |
|
wav = synthesizer.tts( |
|
text=row['text'], |
|
speaker_name=None, |
|
language_name=args.language_idx, |
|
speaker_wav=row['speaker_wav'], |
|
reference_wav=args.reference_wav, |
|
style_wav=args.capacitron_style_wav, |
|
style_text=args.capacitron_style_text, |
|
reference_speaker_name=args.reference_speaker_idx, |
|
) |
|
synthesizer.save_wav(wav, f'{args.out_path}/{row["id"]}.wav') |
|
else: |
|
for idx, row in tqdm(df.iterrows(), total=len(df), desc="Synthesizing"): |
|
wav = synthesizer.tts( |
|
row['text'], |
|
row['speaker_name'] if 'speaker_name' in df.columns else args.speaker_idx, |
|
args.language_idx, |
|
args.speaker_wav, |
|
reference_wav=args.reference_wav, |
|
style_wav=args.capacitron_style_wav, |
|
style_text=args.capacitron_style_text, |
|
reference_speaker_name=args.reference_speaker_idx, |
|
) |
|
synthesizer.save_wav(wav, f'{args.out_path}/{row["id"]}.wav') |
|
print(" > Saved output wav files in {}".format(args.out_path)) |
|
return True |
|
|
|
if args.text: |
|
print(" > Text: {}".format(args.text)) |
|
|
|
|
|
|
|
wav = synthesizer.tts( |
|
args.text, |
|
args.speaker_idx, |
|
args.language_idx, |
|
args.speaker_wav, |
|
reference_wav=args.reference_wav, |
|
style_wav=args.capacitron_style_wav, |
|
style_text=args.capacitron_style_text, |
|
reference_speaker_name=args.reference_speaker_idx, |
|
) |
|
|
|
|
|
print(" > Saving output to {}".format(args.out_path)) |
|
synthesizer.save_wav(wav, args.out_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |