FROMAGe / main.py
alvanli
Add cheese model
1f43fd8
raw
history blame
29.7 kB
"""Training example.
Modified from https://github.com/pytorch/examples/blob/main/imagenet/main.py.
"""
import argparse
import json
import os
import sys
import time
import warnings
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
from torch.optim.lr_scheduler import StepLR
from warmup_scheduler import GradualWarmupScheduler
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.tensorboard import SummaryWriter
import torchvision
from fromage import data
from fromage import losses as losses_utils
from fromage import models
from fromage import utils
from fromage import evaluate
from transformers import AutoTokenizer
# Disable HuggingFace tokenizer parallelism.
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Available LLM models.
llm_models = ['facebook/opt-125m', 'facebook/opt-350m', 'facebook/opt-1.3b',
'facebook/opt-2.7b', 'facebook/opt-6.7b', 'facebook/opt-13b', 'facebook/opt-30b',
'facebook/opt-66b']
datasets = ['cc3m']
best_score = 0 # Variable to keep track of best model so far.
def parse_args(args):
parser = argparse.ArgumentParser(description='FROMAGe training')
parser.add_argument('--opt-version', default='facebook/opt-6.7b',
choices=llm_models,
help='OPT versions: ' +
' | '.join(llm_models) +
' (default: "facebook/opt-6.7b")')
parser.add_argument('--visual-model', default='openai/clip-vit-large-patch14', type=str,
help="Visual encoder to use.")
parser.add_argument('-d', '--dataset', metavar='DATASET', help='Delimited list of datasets:' +
' | '.join(datasets), default='cc3m',
type=lambda s: [x for x in s.split(',')])
parser.add_argument('--val-dataset', metavar='DATASET', default='cc3m',
type=lambda s: [x for x in s.split(',')],
help='Validation dataset: ' +
' | '.join(datasets) +
' (default: cc3m)')
parser.add_argument('--dataset_dir', default='datasets', type=str,
help='Dataset directory containing .tsv files.')
parser.add_argument('--image-dir', default='./data/', type=str,
help='Dataset directory containing image folders.')
parser.add_argument('--log-base-dir', default='./runs/', type=str,
help='Base directory to write logs and ckpts to.')
parser.add_argument('--exp_name', default='frozen', type=str,
help='Name of experiment, used for saving checkpoints.')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=10, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--steps-per-epoch', default=2000, type=int, metavar='N',
help='number of training steps per epoch')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--val-steps-per-epoch', default=-1, type=int, metavar='N',
help='number of validation steps per epoch.')
parser.add_argument('-b', '--batch-size', default=180, type=int,
metavar='N',
help='mini-batch size (default: 180), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--val-batch-size', default=None, type=int)
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--lr-warmup-steps', default=100, type=int,
metavar='N', help='Number of steps to warm up lr.')
parser.add_argument('--lr-schedule-step-size', default=10, type=int,
metavar='N', help='Number of steps before decaying lr.')
parser.add_argument('--lr-schedule-gamma', default=0.1, type=float,
metavar='N', help='Decay parameter for learning rate scheduler.')
parser.add_argument('--grad-accumulation-steps', default=1, type=int, metavar='N',
help='number of gradient accumulation steps')
parser.add_argument('--grad-clip', default=1.0, type=float, help='gradient clipping amount')
parser.add_argument('--precision', default='fp32', type=str, choices=['fp32', 'fp16', 'bf16'], help="Precision to train in.")
parser.add_argument('--cap-loss-scale', type=float, default=1.0, help="Scale on captioning loss.")
parser.add_argument('--ret-loss-scale', type=float, default=1.0, help="Scale on retrieval loss.")
parser.add_argument('--concat-captions-prob', type=float, default=0.5, help="Probability of concatenating two examples sequentially for captioning.")
parser.add_argument('--concat-for-ret', action='store_true', default=False, help="Whether to concatenate examples for retrieval mode.")
parser.add_argument('--input-prompt', default=None, type=str, help="Input prompt for the language model, if any.")
parser.add_argument('--image-size', default=224, type=int, metavar='N', help='Size of images.')
parser.add_argument('--use_image_embed_norm', action='store_true', default=False, help="Whether to use norm on the image embeddings to make them equal to language.")
parser.add_argument('--image_embed_dropout_prob', type=float, default=0.0, help="Dropout probability on the image embeddings.")
parser.add_argument('--use_text_embed_layernorm', action='store_true', default=False, help="Whether to use layer norm on the text embeddings for retrieval.")
parser.add_argument('--text_embed_dropout_prob', type=float, default=0.0, help="Dropout probability on the text embeddings.")
parser.add_argument('--shared-emb-dim', default=256, type=int, metavar='N', help='Embedding dimension for retrieval.')
parser.add_argument('--text-emb-layers', help='Layer to use for text embeddings. OPT-2.7b has 33 layers.', default='-1',
type=lambda s: [int(x) for x in s.split(',')])
parser.add_argument('--max-len', default=24, type=int,
metavar='N', help='Maximum length to truncate captions / generations to.')
parser.add_argument('--n-visual-tokens', default=1, type=int,
metavar='N', help='Number of visual tokens to use for the Frozen model.')
parser.add_argument('--beta1', default=0.9, type=float, metavar='M', help='beta1 for Adam')
parser.add_argument('--beta2', default=0.95, type=float, metavar='M', help='beta2 for Adam')
parser.add_argument('--wd', '--weight-decay', default=0.0, type=float,
metavar='W', help='weight decay (default: 0.0)', dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:1337', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
return parser.parse_args(args)
def main(args):
args = parse_args(args)
i = 1
args.log_dir = os.path.join(args.log_base_dir, args.exp_name)
while os.path.exists(args.log_dir):
args.log_dir = os.path.join(args.log_base_dir, f'{args.exp_name}_{i}')
i += 1
os.makedirs(args.log_dir)
with open(os.path.join(args.log_dir, f'args.json'), 'w') as wf:
json.dump(vars(args), wf, indent=4)
with open(os.path.join(args.log_dir, f'git_info.txt'), 'w') as wf:
utils.dump_git_status(out_file=wf)
print(f'Logging to {args.log_dir}.')
if args.seed is not None:
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
"""Setup code."""
global best_score
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# Create model
model_args = models.FrozenArgs()
model_args.opt_version = args.opt_version
model_args.freeze_lm = True
model_args.visual_encoder = args.visual_model
model_args.freeze_vm = True
model_args.n_visual_tokens = args.n_visual_tokens
model_args.use_image_embed_norm = args.use_image_embed_norm
model_args.image_embed_dropout_prob = args.image_embed_dropout_prob
model_args.use_text_embed_layernorm = args.use_text_embed_layernorm
model_args.text_embed_dropout_prob = args.text_embed_dropout_prob
model_args.shared_emb_dim = args.shared_emb_dim
model_args.text_emb_layers = args.text_emb_layers
tokenizer = AutoTokenizer.from_pretrained(args.opt_version, use_fast=False)
# Add an image token for loss masking (and visualization) purposes.
tokenizer.add_special_tokens({"cls_token": "<|image|>"}) # add special image token to tokenizer
print('Adding [RET] token to vocabulary.')
print('Before adding new token, tokenizer("[RET]") =', tokenizer('[RET]', add_special_tokens=False))
num_added_tokens = tokenizer.add_tokens('[RET]')
print(f'After adding {num_added_tokens} new tokens, tokenizer("[RET]") =', tokenizer('[RET]', add_special_tokens=False))
ret_token_idx = tokenizer('[RET]', add_special_tokens=False).input_ids
assert len(ret_token_idx) == 1, ret_token_idx
model_args.retrieval_token_idx = ret_token_idx[0]
args.retrieval_token_idx = ret_token_idx[0]
# Save model args to disk.
with open(os.path.join(args.log_dir, 'model_args.json'), 'w') as f:
json.dump(vars(model_args), f, indent=4)
model = models.Fromage(tokenizer, model_args)
if args.precision == 'fp16':
model = model.float()
elif args.precision == 'bf16':
model = model.bfloat16()
# Print parameters and count of model.
param_counts_text = utils.get_params_count_str(model)
with open(os.path.join(args.log_dir, 'param_count.txt'), 'w') as f:
f.write(param_counts_text)
# Log trainable parameters to Tensorboard.
_, total_trainable_params, total_nontrainable_params = utils.get_params_count(model)
writer = SummaryWriter(args.log_dir)
writer.add_scalar('params/total', total_trainable_params + total_nontrainable_params, 0)
writer.add_scalar('params/total_trainable', total_trainable_params, 0)
writer.add_scalar('params/total_non_trainable', total_nontrainable_params, 0)
writer.close()
if not torch.cuda.is_available():
print('WARNING: using CPU, this will be slow!')
model = torch.nn.DataParallel(model)
elif args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs of the current node.
args.batch_size = int(args.batch_size / ngpus_per_node)
args.val_batch_size = int((args.val_batch_size or args.batch_size) / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=False)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
model = torch.nn.DataParallel(model).cuda()
# define loss function (criterion), optimizer, and learning rate scheduler
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer_cls = torch.optim.AdamW
print('Using torch.optim.AdamW as the optimizer.')
optimizer = optimizer_cls(model.parameters(), args.lr,
betas=(args.beta1, args.beta2),
weight_decay=args.weight_decay,
eps=1e-8)
"""Sets the learning rate to the initial LR decayed by 10 every 5 epochs"""
scheduler_steplr = StepLR(optimizer, step_size=args.lr_schedule_step_size * args.steps_per_epoch, gamma=args.lr_schedule_gamma)
scheduler = GradualWarmupScheduler(optimizer, multiplier=1.0, total_epoch=args.lr_warmup_steps, after_scheduler=scheduler_steplr)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
best_score = checkpoint['best_score']
if args.gpu is not None:
# best_score may be from a checkpoint from a different GPU
best_score = best_score.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
train_dataset = data.get_dataset(args, 'train', tokenizer)
val_dataset = data.get_dataset(args, 'val', tokenizer)
print(f'Training with {len(train_dataset)} examples and validating with {len(val_dataset)} examples.')
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, drop_last=True)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, drop_last=True)
else:
train_sampler = None
val_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=(args.val_batch_size or args.batch_size), shuffle=False,
num_workers=args.workers, pin_memory=True, sampler=val_sampler)
if args.evaluate:
evaluate.validate(val_loader, model, tokenizer, criterion, epoch, args)
return
for epoch in range(args.start_epoch, args.epochs):
if epoch == 0:
evaluate.validate(val_loader, model, tokenizer, criterion, epoch-1, args)
if args.distributed:
train_sampler.set_epoch(epoch)
# train for one epoch
train(train_loader, model, tokenizer, criterion, optimizer, epoch, scheduler, args)
# evaluate on validation set
eval_score = evaluate.validate(val_loader, model, tokenizer, criterion, epoch, args)
# remember best score and save checkpoint
is_best = eval_score > best_score
best_score = max(eval_score, best_score)
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
utils.save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_score': best_score,
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler.state_dict()
}, is_best, os.path.join(args.log_dir, 'ckpt'))
def train(train_loader, model, tokenizer, criterion, optimizer, epoch, scheduler, args):
"""Main training loop."""
ngpus_per_node = torch.cuda.device_count()
batch_time = utils.AverageMeter('Time', ':6.3f')
cap_time = utils.AverageMeter('CaptioningTime', ':6.3f')
ret_time = utils.AverageMeter('RetrievalTime', ':6.3f')
data_time = utils.AverageMeter('Data', ':6.3f')
losses = utils.AverageMeter('Loss', ':.4e')
ce_losses = utils.AverageMeter('CeLoss', ':.4e')
top1 = utils.AverageMeter('Acc@1', ':6.2f')
top5 = utils.AverageMeter('Acc@5', ':6.2f')
cont_losses = utils.AverageMeter('ContLoss', ':.4e')
top1_caption = utils.AverageMeter('AccCaption@1', ':6.2f')
top5_caption = utils.AverageMeter('AccCaption@5', ':6.2f')
top1_image = utils.AverageMeter('AccImage@1', ':6.2f')
top5_image = utils.AverageMeter('AccImage@5', ':6.2f')
writer = SummaryWriter(args.log_dir)
progress = utils.ProgressMeter(
args.steps_per_epoch,
[batch_time, losses, ce_losses, cont_losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (image_paths, images, caption_images, tgt_tokens, token_len) in enumerate(train_loader):
actual_step = epoch * args.steps_per_epoch + i + 1
# measure data loading time
data_time.update(time.time() - end)
if torch.cuda.is_available():
images = images.cuda(args.gpu, non_blocking=True)
tgt_tokens = tgt_tokens.cuda(args.gpu, non_blocking=True)
token_len = token_len.cuda(args.gpu, non_blocking=True)
if args.precision == 'fp16':
images = images.half()
elif args.precision == 'bf16':
images = images.bfloat16()
model_modes = ['captioning', 'retrieval']
loss = 0
for model_mode in model_modes:
mode_start = time.time()
# compute output
concat_captions = np.random.uniform(0, 1) < args.concat_captions_prob
if not args.concat_for_ret:
concat_captions = concat_captions and model_mode == 'captioning'
(model_output, full_labels, last_embedding, _, visual_embs) = model(
images, tgt_tokens, token_len, mode=model_mode, concat_captions=concat_captions, inference=False)
output = model_output.logits
# Measure captioning accuracy for multi-task models and next-token prediction for retrieval models.
if model_mode == 'captioning':
acc1, acc5 = utils.accuracy(output[:, :-1, :], full_labels[:, 1:], -100, topk=(1, 5))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
ce_loss = model_output.loss
if model_mode == 'captioning':
ce_loss = ce_loss * args.cap_loss_scale
elif model_mode == 'retrieval':
ce_loss = ce_loss * args.ret_loss_scale
else:
raise NotImplementedError
loss += ce_loss
ce_losses.update(ce_loss.item(), images.size(0))
if model_mode == 'retrieval':
# Cross replica concat for embeddings.
if args.distributed:
all_visual_embs = [torch.zeros_like(visual_embs) for _ in range(dist.get_world_size())]
all_last_embedding = [torch.zeros_like(last_embedding) for _ in range(dist.get_world_size())]
dist.all_gather(all_visual_embs, visual_embs)
dist.all_gather(all_last_embedding, last_embedding)
# Overwrite with embeddings produced on this replace, which have the gradient.
all_visual_embs[dist.get_rank()] = visual_embs
all_last_embedding[dist.get_rank()] = last_embedding
visual_embs = torch.cat(all_visual_embs)
last_embedding = torch.cat(all_last_embedding)
start_idx = args.rank * images.shape[0]
end_idx = start_idx + images.shape[0]
logits_per_image = visual_embs @ last_embedding.t()
logits_per_text = logits_per_image.t()
if i == 0:
print(f'Running contrastive loss over logits_per_text.shape = {logits_per_text.shape} and logits_per_image.shape = {logits_per_image.shape}')
# Compute contrastive losses for retrieval.
caption_loss = losses_utils.contrastive_loss(logits_per_text)
image_loss = losses_utils.contrastive_loss(logits_per_image)
caption_acc1, caption_acc5 = losses_utils.contrastive_acc(logits_per_text, topk=(1, 5))
image_acc1, image_acc5 = losses_utils.contrastive_acc(logits_per_image, topk=(1, 5))
loss += args.ret_loss_scale * (caption_loss + image_loss) / 2.0
cont_losses.update(loss.item(), images.size(0))
# measure accuracy and record loss
top1_caption.update(caption_acc1[0], images.size(0))
top5_caption.update(caption_acc5[0], images.size(0))
top1_image.update(image_acc1[0], images.size(0))
top5_image.update(image_acc5[0], images.size(0))
if model_mode == 'retrieval':
ret_time.update(time.time() - mode_start)
elif model_mode == 'captioning':
cap_time.update(time.time() - mode_start)
loss = loss / args.grad_accumulation_steps
losses.update(loss.item(), images.size(0))
loss.backward()
# Update weights
if ((i + 1) % args.grad_accumulation_steps == 0) or (i == args.steps_per_epoch - 1):
# Zero out gradients of the embedding matrix outside of [RET].
for param in model.module.model.input_embeddings.parameters():
assert param.grad.shape[0] == len(tokenizer)
# Keep other embeddings frozen.
mask = torch.arange(param.grad.shape[0]) != args.retrieval_token_idx
param.grad[mask, :] = 0
# compute gradient and do SGD step
if args.grad_clip > 0:
nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
optimizer.zero_grad()
with torch.no_grad():
# Normalize trainable embeddings.
frozen_norm = torch.norm(model.module.model.input_embeddings.weight[:-1, :], dim=1).mean(0)
trainable_weight = model.module.model.input_embeddings.weight[-1, :]
model.module.model.input_embeddings.weight[-1, :].div_(torch.norm(trainable_weight) / frozen_norm)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if actual_step == 1 or (i + 1) % args.print_freq == 0:
ex_per_sec = args.batch_size / batch_time.avg
if args.distributed:
batch_time.all_reduce()
data_time.all_reduce()
ex_per_sec = (args.batch_size / batch_time.avg) * ngpus_per_node
losses.all_reduce()
ce_losses.all_reduce()
top1.all_reduce()
top5.all_reduce()
ret_time.all_reduce()
cont_losses.all_reduce()
top1_caption.all_reduce()
top5_caption.all_reduce()
top1_image.all_reduce()
top5_image.all_reduce()
cap_time.all_reduce()
progress.display(i + 1)
writer.add_scalar('train/loss', losses.avg, actual_step)
writer.add_scalar('train/ce_loss', ce_losses.avg, actual_step)
writer.add_scalar('train/seq_top1_acc', top1.avg, actual_step)
writer.add_scalar('train/seq_top5_acc', top5.avg, actual_step)
writer.add_scalar('train/contrastive_loss', cont_losses.avg, actual_step)
writer.add_scalar('train/t2i_top1_acc', top1_caption.avg, actual_step)
writer.add_scalar('train/t2i_top5_acc', top5_caption.avg, actual_step)
writer.add_scalar('train/i2t_top1_acc', top1_image.avg, actual_step)
writer.add_scalar('train/i2t_top5_acc', top5_image.avg, actual_step)
writer.add_scalar('metrics/total_secs_per_batch', batch_time.avg, actual_step)
writer.add_scalar('metrics/total_secs_captioning', cap_time.avg, actual_step)
writer.add_scalar('metrics/total_secs_retrieval', ret_time.avg, actual_step)
writer.add_scalar('metrics/data_secs_per_batch', data_time.avg, actual_step)
writer.add_scalar('metrics/examples_per_sec', ex_per_sec, actual_step)
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
image_bs = images.shape[0]
normalized_images = images - images.min()
normalized_images /= normalized_images.max() # (N, 3, H, W)
max_images_to_show = 16
# Append caption text.
pred_tokens = output[:, args.n_visual_tokens-1:-1, :].argmax(dim=-1)
generated_captions = tokenizer.batch_decode(pred_tokens, skip_special_tokens=False)
# Log image (and generated caption) outputs to Tensorboard.
if model_mode == 'captioning':
# Create generated caption text.
generated_cap_images = torch.stack([
utils.create_image_of_text(
generated_captions[i].encode('ascii', 'ignore'),
width=normalized_images.shape[3],
color=(255, 255, 0))
for i in range(len(generated_captions))], axis=0)
# Duplicate captions if we concatenated them.
if (args.concat_captions_prob > 0 and model_mode == 'captioning' and generated_cap_images.shape[0] != caption_images.shape[0]):
generated_cap_images = torch.cat([generated_cap_images, generated_cap_images], axis=0)
display_images = torch.cat([normalized_images.float().cpu(), caption_images, generated_cap_images], axis=2)[:max_images_to_show]
grid = torchvision.utils.make_grid(display_images, nrow=int(max_images_to_show ** 0.5), padding=4)
writer.add_image('train/images_gen_cap', grid, actual_step)
# Retrieved images (from text).
retrieved_image_idx = logits_per_text[:image_bs, :image_bs].argmax(-1)
t2i_images = torch.stack(
[normalized_images[retrieved_image_idx[i], ...] for i in range(len(retrieved_image_idx))],
axis=0)
t2i_images = torch.cat([t2i_images.float().cpu(), caption_images], axis=2)[:max_images_to_show]
t2i_grid = torchvision.utils.make_grid(t2i_images, nrow=int(max_images_to_show ** 0.5), padding=4)
writer.add_image('train/t2i_ret', t2i_grid, actual_step)
# Retrieved text (from image).
retrieved_text_idx = logits_per_image[:image_bs, :image_bs].argmax(-1)
retrieved_text = torch.stack(
[caption_images[retrieved_text_idx[i], ...] for i in range(len(retrieved_text_idx))],
axis=0)
i2t_images = torch.cat([normalized_images.float().cpu(), retrieved_text], axis=2)[:max_images_to_show]
i2t_grid = torchvision.utils.make_grid(i2t_images, nrow=int(max_images_to_show ** 0.5), padding=4)
writer.add_image('train/i2t_ret', i2t_grid, actual_step)
batch_time.reset()
cap_time.reset()
ret_time.reset()
data_time.reset()
losses.reset()
ce_losses.reset()
top1.reset()
top5.reset()
cont_losses.reset()
top1_caption.reset()
top5_caption.reset()
top1_image.reset()
top5_image.reset()
if i == args.steps_per_epoch - 1:
break
scheduler.step()
curr_lr = scheduler.get_last_lr()
if (actual_step == 1) or (i + 1) % args.print_freq == 0:
# Write current learning rate to Tensorboard.
writer = SummaryWriter(args.log_dir)
writer.add_scalar('train/lr', curr_lr[0], actual_step)
writer.close()
writer.close()
if __name__ == '__main__':
main(sys.argv[1:])