Martijn van Beers
Fix function name
97c0e0a
raw
history blame
6.98 kB
import sys
import gradio
sys.path.append("BERT_explainability")
import torch
from BERT_explainability.ExplanationGenerator import Generator
from BERT_explainability.roberta2 import RobertaForSequenceClassification
from transformers import AutoTokenizer
from captum.attr import (
visualization
)
import torch
# from https://discuss.pytorch.org/t/using-scikit-learns-scalers-for-torchvision/53455
class PyTMinMaxScalerVectorized(object):
"""
Transforms each channel to the range [0, 1].
"""
def __init__(self, dimension=-1):
self.d = dimension
def __call__(self, tensor):
d = self.d
scale = 1.0 / (tensor.max(dim=d, keepdim=True)[0] - tensor.min(dim=d, keepdim=True)[0])
tensor.mul_(scale).sub_(tensor.min(dim=d, keepdim=True)[0])
return tensor
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model = RobertaForSequenceClassification.from_pretrained("textattack/roberta-base-SST-2").to(device)
model.eval()
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
# initialize the explanations generator
explanations = Generator(model, "roberta")
classifications = ["NEGATIVE", "POSITIVE"]
# rule 5 from paper
def avg_heads(cam, grad):
cam = (
(grad * cam)
.clamp(min=0)
.mean(dim=-3)
)
# set negative values to 0, then average
# cam = cam.clamp(min=0).mean(dim=0)
return cam
# rule 6 from paper
def apply_self_attention_rules(R_ss, cam_ss):
R_ss_addition = torch.matmul(cam_ss, R_ss)
return R_ss_addition
def generate_relevance(model, input_ids, attention_mask, index=None, start_layer=0):
output = model(input_ids=input_ids, attention_mask=attention_mask)[0]
if index == None:
#index = np.expand_dims(np.arange(input_ids.shape[1])
# by default explain the class with the highest score
index = output.argmax(axis=-1).detach().cpu().numpy()
# create a one-hot vector selecting class we want explanations for
one_hot = (torch.nn.functional
.one_hot(torch.tensor(index, dtype=torch.int64), num_classes=output.size(-1))
.to(torch.float)
.requires_grad_(True)
).to(device)
print("ONE_HOT", one_hot.size(), one_hot)
one_hot = torch.sum(one_hot * output)
model.zero_grad()
# create the gradients for the class we're interested in
one_hot.backward(retain_graph=True)
num_tokens = model.roberta.encoder.layer[0].attention.self.get_attn().shape[-1]
print(input_ids.size(-1), num_tokens)
R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(device)
for i, blk in enumerate(model.roberta.encoder.layer):
if i < start_layer:
continue
grad = blk.attention.self.get_attn_gradients()
cam = blk.attention.self.get_attn()
cam = avg_heads(cam, grad)
joint = apply_self_attention_rules(R, cam)
R += joint
return output, R[:, 0, 1:-1]
def visualize_text(datarecords, legend=True):
dom = ["<table width: 100%>"]
rows = [
"<tr><th>True Label</th>"
"<th>Predicted Label</th>"
"<th>Attribution Label</th>"
"<th>Attribution Score</th>"
"<th>Word Importance</th>"
]
for datarecord in datarecords:
rows.append(
"".join(
[
"<tr>",
format_classname(datarecord.true_class),
format_classname(
"{0} ({1:.2f})".format(
datarecord.pred_class, datarecord.pred_prob
)
),
format_classname(datarecord.attr_class),
format_classname("{0:.2f}".format(datarecord.attr_score)),
format_word_importances(
datarecord.raw_input_ids, datarecord.word_attributions
),
"<tr>",
]
)
)
if legend:
dom.append(
'<div style="border-top: 1px solid; margin-top: 5px; \
padding-top: 5px; display: inline-block">'
)
dom.append("<b>Legend: </b>")
for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]):
dom.append(
'<span style="display: inline-block; width: 10px; height: 10px; \
border: 1px solid; background-color: \
{value}"></span> {label} '.format(
value=_get_color(value), label=label
)
)
dom.append("</div>")
dom.append("".join(rows))
dom.append("</table>")
html = "".join(dom)
return html
def show_explanation(model, input_ids, attention_mask, index=None, start_layer=0):
# generate an explanation for the input
output, expl = generate_relevance(model, input_ids, attention_mask, index=index, start_layer=start_layer)
print(output.shape, expl.shape)
# normalize scores
scaler = PyTMinMaxScalerVectorized()
norm = scaler(expl)
# get the model classification
output = torch.nn.functional.softmax(output, dim=-1)
vis_data_records = []
for record in range(input_ids.size(0)):
classification = output[record].argmax(dim=-1).item()
class_name = classifications[classification]
nrm = norm[record]
# if the classification is negative, higher explanation scores are more negative
# flip for visualization
if class_name == "NEGATIVE":
nrm *= (-1)
tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[1:0 - ((attention_mask[record] == 0).sum().item() + 1)]
print([(tokens[i], nrm[i].item()) for i in range(len(tokens))])
vis_data_records.append(visualization.VisualizationDataRecord(
nrm,
output[record][classification],
classification,
classification,
index,
1,
tokens,
1))
return visualize_text(vis_data_records)
def run(input_text):
text_batch = [input_text]
encoding = tokenizer(text_batch, return_tensors='pt')
input_ids = encoding['input_ids'].to(device)
attention_mask = encoding['attention_mask'].to(device)
# true class is positive - 1
true_class = 1
html = show_explanation(model, input_ids, attention_mask)
return html
iface = gradio.Interface(fn=run, inputs="text", outputs="html", examples=[["This movie was the best movie I have ever seen! some scenes were ridiculous, but acting was great"], ["I really didn't like this movie. Some of the actors were good, but overall the movie was boring"]])
iface.launch()