Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,550 Bytes
bd9805e dfd6c72 a4d0b27 dfd6c72 a4d0b27 dfd6c72 a4d0b27 1884e2f dfd6c72 f751f4e 112c6bb b272afc f751f4e dfd6c72 ac0fe1d f751f4e dfd6c72 a4d0b27 bd9805e 3e2e722 bd9805e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import fasttext
# Initialize fastText model
model_path = 'lid.323.ftz'
language_model = fasttext.load_model(model_path)
model_path_translation = "anzorq/m2m100_418M_ft_ru-kbd_44K"
tokenizer = AutoTokenizer.from_pretrained(model_path_translation)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path_translation, use_safetensors=True)
def translate(text, num_beams=4, num_return_sequences=4):
# Detect language
languages, _ = language_model.predict(text, k=1)
detected_language = languages[0].replace("__label__", "")
inputs = tokenizer(text, return_tensors="pt")
num_return_sequences = min(num_return_sequences, num_beams)
translated_tokens = model.generate(
**inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences
)
translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens]
return detected_language, text, translations
title = "Russian-Circassian translator demo"
article = "<p style='text-align: center'>Want to help? Join the <a href='https://discord.gg/cXwv495r' target='_blank'>Discord server</a></p>"
num_beams = gr.inputs.Slider(2, 10, step=1, label="Number of beams", default=4)
num_return_sequences = gr.inputs.Slider(2, 10, step=1, label="Number of returned sentences", default=4)
gr.Interface(
fn=translate,
inputs=["text", num_beams, num_return_sequences],
outputs=["text", "text", gr.Textbox()],
titles=["Detected Language", "Input", "Translations"],
title=title,
article=article).launch()
# import gradio as gr
# title = "Русско-черкесский переводчик"
# description = "Demo of a Russian-Circassian (Kabardian dialect) translator. <br>It is based on Facebook's <a href=\"https://about.fb.com/news/2020/10/first-multilingual-machine-translation-model/\">M2M-100 model</a> machine learning model, and has been trained on 45,000 Russian-Circassian sentence pairs. <br>It can also translate from 100 other languages to Circassian (English, French, Spanish, etc.), but less accurately. <br>The data corpus is constantly being expanded, and we need help in finding sentence sources, OCR, data cleaning, etc. <br>If you are interested in helping out with this project, please contact me at the link below.<br><br>This is only a demo, not a finished product. Translation quality is still low and will improve with time and more data.<br>45,000 sentence pairs is not enough to create an accurate machine translation model, and more data is needed.<br>You can help by finding sentence sources (books, web pages, etc.), scanning books, OCRing documents, data cleaning, and other tasks.<br><br>If you are interested in helping out with this project, contact me at the link below."
# article = """<p style='text-align: center'><a href='https://arxiv.org/abs/1806.00187'>Scaling Neural Machine Translation</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>"""
# examples = [
# ["Мы идем домой"],
# ["Сегодня хорошая погода"],
# ["Дети играют во дворе"],
# ["We live in a big house"],
# ["Tu es une bonne personne."],
# ["أين تعيش؟"],
# ["Bir şeyler yapmak istiyorum."],
# ]
# gr.Interface.load("models/anzorq/m2m100_418M_ft_ru-kbd_44K", title=title, description=description, article=article, examples=examples).launch() |