Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
import fasttext | |
# Initialize fastText model | |
model_path = 'lid.323.ftz' | |
language_model = fasttext.load_model(model_path) | |
model_path_translation = "anzorq/m2m100_418M_ft_ru-kbd_44K" | |
tokenizer = AutoTokenizer.from_pretrained(model_path_translation) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path_translation, use_safetensors=True) | |
def translate(text, num_beams=4, num_return_sequences=4): | |
# Detect language | |
languages, _ = language_model.predict(text, k=1) | |
detected_language = languages[0].replace("__label__", "") | |
inputs = tokenizer(text, return_tensors="pt") | |
num_return_sequences = min(num_return_sequences, num_beams) | |
translated_tokens = model.generate( | |
**inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], num_beams=num_beams, num_return_sequences=num_return_sequences | |
) | |
translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens] | |
return detected_language, text, translations | |
title = "Russian-Circassian translator demo" | |
article = "<p style='text-align: center'>Want to help? Join the <a href='https://discord.gg/cXwv495r' target='_blank'>Discord server</a></p>" | |
num_beams = gr.inputs.Slider(2, 10, step=1, label="Number of beams", default=4) | |
num_return_sequences = gr.inputs.Slider(2, 10, step=1, label="Number of returned sentences", default=4) | |
gr.Interface( | |
fn=translate, | |
inputs=["text", num_beams, num_return_sequences], | |
outputs=["text", "text", gr.Textbox()], | |
titles=["Detected Language", "Input", "Translations"], | |
title=title, | |
article=article).launch() | |
# import gradio as gr | |
# title = "Русско-черкесский переводчик" | |
# description = "Demo of a Russian-Circassian (Kabardian dialect) translator. <br>It is based on Facebook's <a href=\"https://about.fb.com/news/2020/10/first-multilingual-machine-translation-model/\">M2M-100 model</a> machine learning model, and has been trained on 45,000 Russian-Circassian sentence pairs. <br>It can also translate from 100 other languages to Circassian (English, French, Spanish, etc.), but less accurately. <br>The data corpus is constantly being expanded, and we need help in finding sentence sources, OCR, data cleaning, etc. <br>If you are interested in helping out with this project, please contact me at the link below.<br><br>This is only a demo, not a finished product. Translation quality is still low and will improve with time and more data.<br>45,000 sentence pairs is not enough to create an accurate machine translation model, and more data is needed.<br>You can help by finding sentence sources (books, web pages, etc.), scanning books, OCRing documents, data cleaning, and other tasks.<br><br>If you are interested in helping out with this project, contact me at the link below." | |
# article = """<p style='text-align: center'><a href='https://arxiv.org/abs/1806.00187'>Scaling Neural Machine Translation</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>""" | |
# examples = [ | |
# ["Мы идем домой"], | |
# ["Сегодня хорошая погода"], | |
# ["Дети играют во дворе"], | |
# ["We live in a big house"], | |
# ["Tu es une bonne personne."], | |
# ["أين تعيش؟"], | |
# ["Bir şeyler yapmak istiyorum."], | |
# ] | |
# gr.Interface.load("models/anzorq/m2m100_418M_ft_ru-kbd_44K", title=title, description=description, article=article, examples=examples).launch() |