mlip-arena / serve /ranks /homonuclear-diatomics.py
Yuan (Cyrus) Chiang
Add `eqV2_86M_omat_mp_salex` model (#14)
52c1bfb unverified
raw
history blame
3.8 kB
from pathlib import Path
import numpy as np
import pandas as pd
import streamlit as st
from mlip_arena.models import REGISTRY as MODELS
valid_models = [
model
for model, metadata in MODELS.items()
if Path(__file__).stem in metadata.get("gpu-tasks", [])
]
DATA_DIR = Path("mlip_arena/tasks/diatomics")
dfs = [
pd.read_json(DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json")
for model in valid_models
]
df = pd.concat(dfs, ignore_index=True)
table = pd.DataFrame()
for model in valid_models:
rows = df[df["method"] == model]
metadata = MODELS.get(model, {})
new_row = {
"Model": model,
"Conservation deviation [eV/Å]": rows["conservation-deviation"].mean(),
"Spearman's coeff. (Energy - repulsion)": rows[
"spearman-repulsion-energy"
].mean(),
"Spearman's coeff. (Force - descending)": rows[
"spearman-descending-force"
].mean(),
"Tortuosity": rows["tortuosity"].mean(),
"Energy jump [eV]": rows["energy-jump"].mean(),
"Force flips": rows["force-flip-times"].mean(),
"Spearman's coeff. (Energy - attraction)": rows[
"spearman-attraction-energy"
].mean(),
"Spearman's coeff. (Force - ascending)": rows[
"spearman-ascending-force"
].mean(),
}
table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True)
table.set_index("Model", inplace=True)
table.sort_values("Conservation deviation [eV/Å]", ascending=True, inplace=True)
table["Rank"] = np.argsort(table["Conservation deviation [eV/Å]"].to_numpy())
table.sort_values(
"Spearman's coeff. (Energy - repulsion)", ascending=True, inplace=True
)
table["Rank"] += np.argsort(table["Spearman's coeff. (Energy - repulsion)"].to_numpy())
table.sort_values(
"Spearman's coeff. (Force - descending)", ascending=True, inplace=True
)
table["Rank"] += np.argsort(table["Spearman's coeff. (Force - descending)"].to_numpy())
table.sort_values("Tortuosity", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Tortuosity"].to_numpy())
table.sort_values("Energy jump [eV]", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Energy jump [eV]"].to_numpy())
table.sort_values("Force flips", ascending=True, inplace=True)
table["Rank"] += np.argsort(table["Force flips"].to_numpy())
table["Rank"] += 1
table.sort_values("Rank", ascending=True, inplace=True)
table["Rank aggr."] = table["Rank"]
table["Rank"] = np.argsort(table["Rank"].to_numpy()) + 1
# table.drop(columns=["rank"], inplace=True)
# table = table.rename(columns={"Rank": "Rank Aggr."})
table = table.reindex(
columns=[
"Rank",
"Rank aggr.",
"Conservation deviation [eV/Å]",
"Spearman's coeff. (Energy - repulsion)",
"Spearman's coeff. (Force - descending)",
"Tortuosity",
"Energy jump [eV]",
"Force flips",
"Spearman's coeff. (Energy - attraction)",
"Spearman's coeff. (Force - ascending)",
]
)
s = (
table.style.background_gradient(
cmap="viridis_r",
subset=["Conservation deviation [eV/Å]"],
gmap=np.log(table["Conservation deviation [eV/Å]"].to_numpy()),
)
.background_gradient(
cmap="Reds",
subset=[
"Spearman's coeff. (Energy - repulsion)",
"Spearman's coeff. (Force - descending)",
],
# vmin=-1, vmax=-0.5
)
.background_gradient(
cmap="RdPu",
subset=["Tortuosity", "Energy jump [eV]", "Force flips"],
)
.background_gradient(
cmap="Blues",
subset=["Rank", "Rank aggr."],
)
)
def render():
st.dataframe(
s,
use_container_width=True,
)
# return table