Spaces:
Running
Running
File size: 8,957 Bytes
66f99fe 5bd932e 66f99fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
"""
Copyright $today.year LY Corporation
LY Corporation licenses this file to you under the Apache License,
version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at:
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.
"""
import os
import torch
import subprocess
import ffmpeg
import pandas as pd
import gradio as gr
from tqdm import tqdm
from lighthouse.models import *
# use GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_NAMES = ['cg_detr', 'moment_detr', 'eatr', 'qd_detr', 'tr_detr', 'uvcom']
FEATURES = ['clip', 'clip_slowfast']
TOPK_MOMENT = 5
TOPK_HIGHLIGHT = 5
"""
Helper functions
"""
def load_pretrained_weights():
file_urls = []
for model_name in MODEL_NAMES:
for feature in FEATURES:
file_urls.append(
"https://zenodo.org/records/13363606/files/{}_{}_qvhighlight.ckpt".format(feature, model_name)
)
for file_url in tqdm(file_urls):
if not os.path.exists('weights/' + os.path.basename(file_url)):
command = 'wget -P weights/ {}'.format(file_url)
subprocess.run(command, shell=True)
# Slowfast weights
if not os.path.exists('SLOWFAST_8x8_R50.pkl'):
subprocess.run('wget https://dl.fbaipublicfiles.com/pyslowfast/model_zoo/kinetics400/SLOWFAST_8x8_R50.pkl', shell=True)
return file_urls
def flatten(array2d):
list1d = []
for elem in array2d:
list1d += elem
return list1d
"""
Model initialization
"""
load_pretrained_weights()
model = CGDETRPredictor('weights/clip_cg_detr_qvhighlight.ckpt', device=device,
feature_name='clip', slowfast_path='SLOWFAST_8x8_R50.pkl')
js_codes = ["""() => {{
let moment_text = document.getElementById('result_{}').textContent;
var replaced_text = moment_text.replace(/moment..../, '').replace(/\ Score.*/, '');
let start_end = JSON.parse(replaced_text);
document.getElementsByTagName("video")[0].currentTime = start_end[0];
document.getElementsByTagName("video")[0].play();
}}""".format(i) for i in range(TOPK_MOMENT)]
"""
Gradio functions
"""
def video_upload(video):
if video is None:
model.video_feats = None
model.video_mask = None
model.video_path = None
yield gr.update(value="Removed the video", visible=True)
else:
yield gr.update(value="Processing the video. Wait for a minute...", visible=True)
model.encode_video(video)
yield gr.update(value="Finished video processing!", visible=True)
def model_load(radio):
if radio is not None:
yield gr.update(value="Loading new model. Wait for a minute...", visible=True)
global model
feature, model_name = radio.split('+')
feature, model_name = feature.strip(), model_name.strip()
if model_name == 'moment_detr':
model_class = MomentDETRPredictor
elif model_name == 'qd_detr':
model_class = QDDETRPredictor
elif model_name == 'eatr':
model_class = EaTRPredictor
elif model_name == 'tr_detr':
model_class = TRDETRPredictor
elif model_name == 'uvcom':
model_class = UVCOMPredictor
elif model_name == 'taskweave':
model_class = TaskWeavePredictor
elif model_name == 'cg_detr':
model_class = CGDETRPredictor
else:
raise gr.Error("Select from the models")
model = model_class('weights/{}_{}_qvhighlight.ckpt'.format(feature, model_name),
device=device, feature_name='{}'.format(feature), slowfast_path='SLOWFAST_8x8_R50.pkl')
yield gr.update(value="Model loaded: {}".format(radio), visible=True)
def predict(textbox, line, gallery):
prediction = model.predict(textbox)
if prediction is None:
raise gr.Error('Upload the video before pushing the `Retrieve moment & highlight detection` button.')
else:
mr_results = prediction['pred_relevant_windows']
hl_results = prediction['pred_saliency_scores']
buttons = []
for i, pred in enumerate(mr_results[:TOPK_MOMENT]):
buttons.append(gr.Button(value='moment {}: [{}, {}] Score: {}'.format(i+1, pred[0], pred[1], pred[2]), visible=True))
# Visualize the HD score
seconds = [model.clip_len * i for i in range(len(hl_results))]
hl_data = pd.DataFrame({ 'second': seconds, 'saliency_score': hl_results })
min_val, max_val = min(hl_results), max(hl_results) + 1
min_x, max_x = min(seconds), max(seconds)
line = gr.LinePlot(value=hl_data, x='second', y='saliency_score', visible=True, y_lim=[min_val, max_val], x_lim=[min_x, max_x])
# Show highlight frames
n_largest_df = hl_data.nlargest(columns='saliency_score', n=TOPK_HIGHLIGHT)
highlighted_seconds = n_largest_df.second.tolist()
highlighted_scores = n_largest_df.saliency_score.tolist()
output_image_paths = []
for i, (second, score) in enumerate(zip(highlighted_seconds, highlighted_scores)):
output_path = "highlight_frames/highlight_{}.png".format(i)
(
ffmpeg
.input(model.video_path, ss=second)
.output(output_path, vframes=1, qscale=2)
.global_args('-loglevel', 'quiet', '-y')
.run()
)
output_image_paths.append((output_path, "Highlight: {} - score: {:.02f}".format(i+1, score)))
gallery = gr.Gallery(value=output_image_paths, label='gradio', columns=5, show_download_button=True, visible=True)
return buttons + [line, gallery]
def main():
title = """# Moment Retrieval & Highlight Detection Demo"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(title)
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown("## Model selection")
radio_list = flatten([["{} + {}".format(feature, model_name) for model_name in MODEL_NAMES] for feature in FEATURES])
radio = gr.Radio(radio_list, label="models", value="clip + cg_detr", info="Which model do you want to use?")
load_status_text = gr.Textbox(label='Model load status', value='Model loaded: clip + cg_detr')
with gr.Group():
gr.Markdown("## Video and query")
video_input = gr.Video(elem_id='video', height=600)
output = gr.Textbox(label='Video processing progress')
query_input = gr.Textbox(label='query')
button = gr.Button("Retrieve moment & highlight detection", variant="primary")
with gr.Column():
with gr.Group():
gr.Markdown("## Retrieved moments")
button_1 = gr.Button(value='moment 1', visible=False, elem_id='result_0')
button_2 = gr.Button(value='moment 2', visible=False, elem_id='result_1')
button_3 = gr.Button(value='moment 3', visible=False, elem_id='result_2')
button_4 = gr.Button(value='moment 4', visible=False, elem_id='result_3')
button_5 = gr.Button(value='moment 5', visible=False, elem_id='result_4')
button_1.click(None, None, None, js=js_codes[0])
button_2.click(None, None, None, js=js_codes[1])
button_3.click(None, None, None, js=js_codes[2])
button_4.click(None, None, None, js=js_codes[3])
button_5.click(None, None, None, js=js_codes[4])
# dummy
with gr.Group():
gr.Markdown("## Saliency score")
line = gr.LinePlot(value=pd.DataFrame({'x': [], 'y': []}), x='x', y='y', visible=False)
gr.Markdown("### Highlighted frames")
gallery = gr.Gallery(value=[], label="highlight", columns=5, visible=False)
video_input.change(video_upload, inputs=[video_input], outputs=output)
radio.select(model_load, inputs=[radio], outputs=load_status_text)
button.click(predict,
inputs=[query_input, line, gallery],
outputs=[button_1, button_2, button_3, button_4, button_5, line, gallery])
demo.launch()
if __name__ == "__main__":
main() |